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Abstract— The problem of fault detection and isolation in
cyber-physical systems is growing in importance following the
trend to have an ubiquitous presence of sensors and actuators
with network capabilities in power networks and other areas. In
this context, attacks to power systems or other vital components
providing basic needs might either present a serious threat or
at least cost a lot of resources. In this paper, we tackle the
problem of having an intruder corrupting a smart grid in two
different scenarios: a centralized detector for a portion of the
network and a fully distributed solution that only has limited
neighbor information. For both cases, differences in strategies
using Set-Valued Observers are discussed and theoretical results
regarding a bound on the maximum magnitude of the attacker’s
signal are provided. Performance is assessed through simula-
tion, illustrating, in particular, the detection time for various
types of faults in IEEE testbed scenarios.

I. INTRODUCTION

Performing fault detection in the context of cyber-physical
systems is a challenging task, in particular due to the large
size of the network or its sensibility to attacks. In the case
of a smart grid, a network failure or malignant action can
compromise its service and is a fundamental challenge in
real applications [1], [2]. Besides failures and attacks to the
physical power grid infrastructure, one must also consider
cyber attacks to its communication layer. Therefore, the
problem of detecting faults and identifying where they are
occurring in a network is considered in this paper. We adopt
the linearized small signal version of the structure-preserving
model, composed by the linearized swing and the DC power
flow equations. A comprehensive survey can be found in [3]
regarding different aspects of the design of smart grids. The
importance of the problem addressed here has been noted in
[1] and later in [2].
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In [4], the use of Set-Valued Observers (SVOs) for dis-
tributed fault detection was firstly introduced for the dis-
tributed consensus problem. The algorithm is modeled as
a Linear Parameter-Varying (LPV) system where communi-
cations are seen as a parameter-dependent dynamics matrix.
Whereas in [4], each node has access to its own state and one
of the neighbor states to which it communicates, distributed
detection can also be improved by resorting to exchanging
state estimates whenever the systems communicate or take
measurements by using a similar algorithm to the one
presented in [5].

The SVOs framework, whose concept was introduced
in [6] and [7] (further information can be found in [8]
and [9] and references therein) is used to represent and
propagate the set-valued state estimates for linear systems
with disturbances and model uncertainties.

For the particular case of smart grids, other proposals have
been presented by the research community as alternative
fault detection methods. A survey focused in fault location
methods for both transmission and distribution systems can
be found in [10].

In [11], faults are detected by constructing a χ2-detector
that constructs the χ2 statistics from a Kalman filter and
compares them to perform statistical hypothesis testing. Such
a strategy is stochastic in nature and includes potential false-
positives with a certain probability. The alternative approach
presented in this paper is deterministic and relies on a worst-
case detection.

Fault detection in smart grids has also been performed
resorting to the concept of Petri Nets [12]. The procedure
consists in modeling all possible concurrent actions of the
nodes in the network to determine the current state of the sys-
tem and checking if it is compatible with the measurements.
In this article, we adopt a different methodology although
the objective is the same, in the sense that we are computing
a set of all possible valid states of the system.

In [13], the authors study the problem of undetectable
faults due to the unobservable modes of the system. The
fault detection is based on ensuring that the network is
observable for a fixed number of compromised nodes by
carefully selecting which states to measure. Although the
focus is slightly different, the definition for the equation
dictating the detection and isolation of faults are related. In
[14], one of the main results is to characterize detectability of
faults both using dynamic and static procedures considering
the dynamics of the network and no disturbances to the
model.

In a different direction, [15] and [16] show that the theoret-
ical condition for fault detectability and identifiability in the
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context of smart power grids is similar to that of detecting
faults in consensus problems and amounts to studying the
zero dynamics of the system given by the difference between
the nominal “fault-free” and the one with the input fault
signal.

The main contributions of this paper are as follows:
• we show how to perform fault detection and isolation

with observers from a centralized point-of-view. In this
scenario, it is shown that uncertainty associated with the
initial state can be reduced to zero in finite time;

• the distributed setting is addressed by adding uncer-
tainty parameters to model the unknown dynamics.
Given the stability property of the smart grid, we show
that the SVOs asymptotically converge to the true state;

• a bound on the maximum magnitude of the attacker
signal is given by formulating the problem as a distin-
guishability of two systems. Simulations are provided to
illustrate how our results could be applied to realistic
systems.

The remainder of this paper is organized as follows. In
Section II, we describe the smart grid model to be addressed.
Section III describes the SVO technique and how it can be
improved using tools in the literature for the centralized case.
The methodology for tackling the decentralized version is
presented in Section IV along with rewriting the problem as
a distinguishability of two systems and obtaining bounds on
the attacker signal in Section V. The mentioned points are
illustrated in simulation in Section VI. Concluding remarks
and directions of future work are provided in Section VII.

Notation : The transpose of a matrix A is denoted by
Aᵀ. We let 1n := [1 . . . 1]ᵀ and 0n := [0 . . . 0]ᵀ indicate n-
dimensional vector of ones and zeros, respectively, and In
denotes the identity matrix of dimension n. Dimensions are
omitted when clear from context. The vector ei denotes the
canonical vector whose components are equal to zero, except
for the ith component. The symbol ⊗ denotes the kronecker
product. The notation ||.|| refers to ‖v‖ := supi |vi| for a
vector, and ‖A‖ := σ̄(A). The ith coordinate of a vector v
is denoted by [v]i.

II. PROBLEM STATEMENT

In this section, we introduce the smart grid network as
a cyber physical system. The model presented in [14] is
considered for the evolution of the state of a smart power
grid, namely, a connected power network consisting of n
generators and their corresponding n generator terminal
buses and m load buses, totaling n+m buses in the network.
The dynamics of the network follows the linear small-signal
version of the classical structure-preserving power network
model discussed in [17], which comprises the dynamic
linearized swing equation and the algebraic DC power flow
equation. Further details regarding the derivation of such
dynamics from the nonlinear model can be found in [18]
and [15].

The weighted graph associated with the admittance
in the connectivity network induces a Laplacian matrix

[
Lgg Lgl
Lgl Lll

]
∈ R(n+m)×(n+m), where the first n rows are

associated with the buses connecting to the generators and
the remaining rows correspond to the bus network.

The whole system can be described by the differential-
algebraic continuous-time dynamic model given by

Ncẋ(t) = Acx(t) + p(t) (1)

where the state x = [δᵀωᵀθᵀ]ᵀ ∈ R2n+m, encompasses the
generator rotor angles δ ∈ Rn, the frequencies ω ∈ Rn, and
the bus voltages angles θ ∈ Rm. The input term p(t) accounts
for the known changes in input power to the generators or
power demands of the loads. The matrices of the dynamics
are as follows

Nc =

I 0 0
0 Ng 0
0 0 0

 , Ac = −

 0 −I 0
Lgg Dg Lgl
Llg 0 Lll

 ,
where Ng and Dg are the diagonal matrices of the generator
inertia and damping coefficients.

For detection purposes, we assume that a subset of the
state variables being measured is corrupted by sensor noise
as modeled next. Let C ∈ Rp×n and η ∈ Rp, and the signal
f represent cyber-physical attacks in the sensors and/or in
the state, leading to the following system equations

Ncẋ(t) = Acx(t) + u(t) +
[
F 0

]︸ ︷︷ ︸
Fc

f(t) + Ecd(t)

y(t) = Ccx(t) +
[
0 L

]︸ ︷︷ ︸
Lc

f(t) + η(t)

where F ∈ R2n+m×2n+m, Ec ∈ R2n+m×q , L ∈ Rp×p,
d(t) ∈ Rq , f(t) ∈ R2n+m+p, u(t) = p(t) and both F and
L are full rank matrices. The terms d(t), η(t) and f(t) are
respectively the disturbance, noise and attack signals.

We assume that the parameters of the network can be
estimated as in [19], but, in contrast to [14] where no
disturbances and noise are included, we consider the error in
the estimation by adding a disturbance term to equation (1).

The next step is to transform the differential-algebraic
system in (1) into a standard differential equation model, as
described in [14], by resorting to the fact that Lll is invertible
due to the overall network being connected [18]. This implies
that the bus voltage angles θ(t) can be obtained from
the remaining variables by simply inverting the algebraic
equation in (1).

If we consider the partition of the matrices F =[
F ᵀ
δ F ᵀ

ω F ᵀ
θ

]ᵀ
, Ec =

[
Eᵀ
δ Eᵀ

ω Eᵀ
θ

]ᵀ
and Cc =[

Cδ Cω Cθ
]
, where the dimensions of the submatrices

are in accordance to the state x =
[
δᵀ ωᵀ θᵀ

]
, the fol-

lowing set of equations, known as the kron-reduced system,
is obtained
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[
δ̇(t)
ω̇(t)

]
=

[
0 I

−N−1
g (Lgg − LglL−1

ll Llg) −N−1
g Dg

]
︸ ︷︷ ︸

Ã

[
δ(t)
ω(t)

]

+

[
I 0 0
0 N−1

g −N−1
g LglL−1

ll

]
︸ ︷︷ ︸

B̃

u(t)

+

[
Fδ 0

N−1
g Fω −N−1

g LglL−1
ll Fθ 0

]
︸ ︷︷ ︸

F̃

f(t)

+

[
Eδ 0

N−1
g Eω −N−1

g LglL−1
ll Eθ 0

]
︸ ︷︷ ︸

Ẽ

[
d(t)
η(t)

]
,

y(t) =
[
Cδ − CθL−1

ll Llg Cω
]︸ ︷︷ ︸

C̃

[
δ(t)
ω(t)

]
+
[
0 0 CθL−1

ll

]︸ ︷︷ ︸
D̃

u(t)

+
[
CθL−1

ll Fθ L
]︸ ︷︷ ︸

L̃

f(t) +
[
CθL−1

ll Eθ I
]︸ ︷︷ ︸

Ñ

[
d(t)
η(t)

]
.

Thus, the kron reduced system, with its associated tuple of
matrices (Ã, B̃, C̃, D̃, Ẽ, F̃ , L̃, Ñ), where B̃ = I and D̃ = 0,
is in the form of a linear time-invariant system, which after
the discretization assumes the form

x(k + 1) = Ax(k) +Bu(k) + Ff(k) + Ed(k)

y(k) = Cx(k) +Du(k) + Lf(k) +Nd(k)
, (2)

where x(k) ∈ Rnx , y(k) ∈ Rny , u(k) ∈ Rnu , f(k) ∈ Rnf

and d(k) ∈ Rnd (which stacks both the previous disturbance
and noise signals), with matrices of appropriate size. It is
assumed the bound ∀1≤i<nd

: |di(k)| ≤ 1 and, given that
matrix N is constant, we can also find ν? such that ∀1≤i<ny :
|[Nd(k)]i| ≤ ν?.

III. CENTRALIZED SETUP

The problem tackled in this paper is that of detecting
non-zero signals f(k) in the model (2) based on the output
measurements y(k). In the sequel, details are provided for
the centralized setup, where a single detecting node in the
network has access to the whole output measurement and
knowledge of the full dynamics. The main focus is to get a
detection algorithm that guarantees a bound on the maximum
magnitude of an undetectable attack.

For the design of the proposed fault detection solution, we
adopt the Set-Valued Observers (SVOs) framework presented
in [20] and [21] which enables the construction of a set where
the state of the system is known to belong. Using a worst-
case set-based estimator we can study magnitude bounds for
undetected fault signals.

To review the steps in the construction of our fault detec-
tion mechanism, we define Set(M,m) := {q : Mq ≤ m},
which represents a convex polytope, with the operator ≤
being a component-wise operation between the two vectors.

The aim of an SVO is to find the smallest set X(k) contain-
ing all possible states of the system at time k, knowing that
∀0≤i<H , x(k − i) ∈ X(k − i) for all past H time steps and
the dynamics of the system (2) with matrices F and L equal
to zero, since the set represents the possible states generated
by a fault-free dynamic system.

More precisely, the initial state satisfies x(0) ∈ X(0),
where X(0) := Set(M0,m0) and M0 and m0 are selected
such that the corresponding polytope is guaranteed to contain

the initial state. The notation Z̄ :=

[
Z
−Z

]
, for a matrix Z,

and v̄ :=

[
v
−v

]
, for a vector v will be used to shorten

the following equations. The information obtained by an
additional output measurement y(k + 1), results in a set
X(k + 1) that can be described as the set of points, x,
satisfying

M(k)A−1 −M(k)A−1E
C̄ 0
0 Ī


︸ ︷︷ ︸

M(k+1)

[
x
d

]
≤

 m(k) + ũ(k)
ȳ(k + 1) + ν?1

1


︸ ︷︷ ︸

m(k+1)

(3)
for some d where we used the notation ũ(k) :=
M(k)A−1Bu(k).

This procedure assumes an invertible matrix of the dynam-
ics A. When this is not the case, we can adopt the strategy
in [22] and solve the inequality

Ī −Ā −Ē
0 0 Ī
C̄ 0 0
0 M(k) 0


 x
x−

d

 ≤


B̄u(k)
1

ȳ(k + 1) + ν?1
m(k)

 . (4)

By applying the Fourier-Motzkin elimination method [23] to
remove the dependence on x−, we still obtain a set described
by M(k + 1)x ≤ m(k + 1).

We recall the definition of the Fourier-Motzkin elimination
method [24] as

Definition 1 (Fourier-Motzkin elimination method): Take

a polytope described by
{[

x
y

]
∈ Rnx+ny : A

[
x
y

]
≤ b

}
.

The Fourier-Motzkin elimination method is a function

(AFM, bFM) = FM(A, b, nx)

such that

AFM y ≤ bFM ⇔ ∃x∈Rnx : A

[
x
y

]
≤ b.

The above computations assume a horizon value H = 1,
i.e., only the measurements from time k and the input
signal from time k − 1 are used to compute the set-valued
estimate of the state at time k. Due to the uncertainty in
the initial state or the use of an approximation, X̃(k), to
set X(k) (for example, to avoid the number of vertices
of the polytope to render the calculation of the Fourier-
Motzkin elimination method intractable), one might consider
including past measurements to improve detection, at the
expenses of a higher computational cost, by extending the

MTNS 2018, July 16-20, 2018
HKUST, Hong Kong

477



previous inequalities to a general horizon H . In doing so, it
may reduce the conservatism of the set-valued state estimate,
as shown in [25]. Finding M(k+1) for larger horizon values
is based on lifting techniques and the formulas can be found
in [21].

Constructing the above SVO for the fault free system (i.e.,
(2) with f = 0), a fault can be declared when the set X(k)
is empty, which means that there is no fault-free trajectory
compatible with the observed measurements.

Resorting to results in [25], [21] and [26], one can use
of the concept of left-coprime factors to bound the required
horizon and decrease the detection time.

Concatenating all inputs to (2) in a single vector u,
this system can be expressed as follows, for appropriately
defining matrices A,B,C,D:

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)
(5)

Proposition 1 (left-coprime factorization [27]): Let
a discrete-time dynamic system described by (5) be
detectable, with transfer function

P (z) := D + C(zI −A)−1B :=

[
zI −A B
C D

]
and define[
G(z) Q(z)

]
=

[
zI −A+KC −K B −KD

RC R RD

]
where R is any nonsingular matrix and K is such that A−
KC is stable. Then,

P (z) = G−1(z)Q(z).

Q G−1
u u1 y

Fig. 1. Schematic representation of the two coprime systems.

The above factorization is depicted in Fig. 1. The left-
coprime factorization creates two separate systems Q and
G and a fault detection time can be bounded resorting to
results from [21]. In [25] and [21], it is shown that if the
system is observable, we can select the matrix K such
that all eigenvalues of A − KC are equal to zero and
the fault detection time is not larger than the number of
states of the system (multiplied by the sampling period). The
main advantage of the factorization is the appearance of the
tunable gain K.

IV. DECENTRALIZED SETUP

In the previous section, we assumed that one detecting
agent is present with knowledge of the whole network
dynamics and with access to the output measurements. We
now consider a decentralized version of this problem, where
each node implements a detector based on partial knowledge
of the dynamics and a local subset of measurements. In
Algorithm 1 it is described the pseudo-code of the detection

algorithm based on a decentralized setup, which convergence
can be regarded as that of a consensus system (see [5]). In the
sequel, details are provided on the need for an approximation
X̃(k) and how it can be computed.

Algorithm 1 Detection using SSVO

Require: Set X̃(0), and the output measurement vectors
yi(k) of each detector node i.

Ensure: Distributed fault detection.

1: for each k ≥ 0 do
2: for each i do
3: /* Find the state estimate X̃i(k) */
4: X̃i(k) = SVO iteration(X̃i(k− 1), yi(k))
5: /* Exchange and intersect estimates with other

detectors */
6: X̃i(k) =

⋂
j X̃

j(k)

7: /* Check if X̃i(k) is empty */
8: if X̃i(k) = ∅ then
9: return System is faulty

10: end if
11: end for
12: end for

The problem using a decentralized detection can be tackled
resorting to the techniques in the literature provided in
[28]. The main problem associated with the detector having
access to limited local information is that part of the system
dynamics is unknown. These uncertainties can be represented
by rewriting matrix A in (2) as the sum of a single central
matrix A0 with parameter-dependent terms:

A = A0 +

n∆∑
`=1

∆`A` (6)

where each ∆`, ∀1 ≤ ` ≤ n∆ is a scalar uncertainty with
|∆`| ≤ 1, and the A`, ` ∈ {1, 2, . . . , n∆} a sufficiently rich
collection of matrices so that all the possible values for A can
be written as in (6). This can be achieved through principal
component analysis or by directly considering an uncertainty
for each of the components unknown to the detector [28]. For
the sake of simplicity, we denote by ∆ = [∆1, · · · ,∆n∆

]ᵀ

the vector of uncertain parameters.
Detecting a fault in a worst-case scenario amounts to find

whether there exists possible values for the disturbance and
noise signals, initial value and uncertainty parameters such
that the dynamics in (2) with f(k) = 0 for ∀k ≥ 0 produce
the output of the system yik.

For a particular value of the uncertainty vector ∆, the
next exact set-valued estimates for the state can be obtained
using (3) (or (4)). By using the notation Xδ(k) to denote
the set produced by (3) using the uncertainty value δ and
H := {δ ∈ Rn∆H : |δ| ≤ 1} as the hypercube of all possible
values for ∆, the state estimate X(k) is given by:

X(k) =
⋃
δ∈H

Xδ(k). (7)
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Remark that the set X(k) in (7) is in general non-convex and
an iterative update would be computationally expensive. An
alternative is to approximate X(k) by a polytopic X̃(k) :=
Set(M(k),m(k)) in order to maintain tractability of the
algorithm. The objective is to have polytopical SVOs pro-
ducing the smallest over-approximation of the sets produced
by the ideal SVO that would return X(k). The polytopical
approximation of (7) that contains all possible states of the
system described by (2), with |∆`| ≤ 1 and f(·) ≡ 0, at time
k + 1 can be obtained by

X̃(k + 1) = co
( ⋃
θ∈H

Set(Mθ(k + 1),mθ(k + 1))
)

(8)

where co() denotes the convex hull θ are the vertices of
the hypercube H. The convex hull in (8) can be performed
using the methods described in [20]. It is straightforward to
conclude that X(k+1) ⊆ X̃(k+1). Moreover, the set-valued
estimates X̃(k+1) have a uniformly bounded volume for all
k ≥ 0 given that there is a hyper-parallelepiped that contains
the set X̃(k) at each time instant with uniformly bounded
distance between any two vertices. This result is given in
Proposition 1 in [20] for stable systems.

In terms of complexity, the algorithm to compute the set-
valued estimates requires the generation of a polytope for
each of the vertices θ of the uncertainty hypercube H, which
grow exponentially on the dimension nx of the state, since
the number of vertices of the hypercube to be considered is
2n∆H .

The aforementioned method for the distributed case com-
pares with the one presented in Section III as a trade-
off between knowledge of the system and performance.
The centralized solution takes advantage of knowing the
dynamics and avoids uncertainty parameters, which means
a computationally lighter algorithm since it does nor require
a convex hull operation, it is optimal in the sense that no
conservatism is added if no measurements are discarded
due to the horizon and allowed the introduction of the
coprime factorization. The decentralized case favors less
centralized operations and global knowledge at the expenses
of an approximated solution that requires more demanding
computations although some techniques like [29] can be
employed to reduce the processing overhead.

V. WORST-CASE ATTACK

The SVO-based approach formulated the fault detection
as a distinguishability problem between the last H measure-
ments of the real system and those provided by a fault-free
model. Regardless of the adopted solution, it is possible to
find theoretical bounds for the worst-case undetected attacker
signal. The essence of the process being described in the
sequel is to define the set of all inputs and initial states such
that the output of the two systems would be the same (i.e.,
that the faulty and fault-free would not be distinguishable).
Then by selecting the largest magnitude of the attacker signal
within this polytope one can find the worst-case in terms
of undetected faults. To accomplish this, we borrow the

definitions from [30] for the distinguishability of systems
SA and SB :

Let

(AH , bH) = RFM

LFM



MH

−MH

M̃Xo

M̃W

 ,


0
0

m̃Xo

mW

 , 2n
 , nu

 .

with

MH =


CA −CB

CAAA −CBAB
CAA

2
A −CBA2

B
...

...
CAA

H
A −CBAHB

R̄ J̄

 ,
where

R̄ =


0 0 · · · 0
R1

1 0 · · · 0
R2

1 R2
2 · · · 0

...
...

. . .
...

RH1 RH2 · · · RHH

+ Q̄,

Q̄ = diag(Q,Q, · · · , Q), Q =
[
NA L −NB

]
,

Rki =
[
CAA

k−i
A EA CAA

k−i
A F −CBAk−iB EB

]
,

J̄ =


0 0 · · · 0
J1

1 0 · · · 0
J2

1 J2
2 · · · 0

...
...

. . .
...

JH1 JH2 · · · JHH

 ,

Jki =
[
CAA

k−i
A BA − CBAk−iB BB

]
,

and

M̃Xo
=
[
diag(MXo ,MXo) 0 0 0

]
, m̃Xo

=

[
mXo

mXo

]
,

M̃W =

[
0 diag(Mn, · · · ,Mn) 0 0
0 0 diag(Md, · · · ,Md) 0

]
,

mW =
[
mT
n · · · mT

n mT
d · · · mT

d

]T
.

Matrix MXo
and vector mXo

are those defining the
polytope for the initial state of both systems SA and SB
and similarly Mn, mn and Md and md for the noise and
disturbance signals, respectively. Associating with system A
the system with the fault (i.e., (2) with the fault f ) and
with system B the fault-free system (i.e., (2) with f = 0),
the following optimization problem can be used to find the
worst-case magnitude attack that remains undetectable:

γmin ≥ max
AHx≤bH

xTPAx. (9)

with

PA =
1

H
diag(0nd

, P̄ , 0nd
, 0nd

, P̄ , 0nd
, · · · , 0nd

, P̄ , 0nd
).
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Fig. 2. IEEE 14 bus system test bed example [32]

The matrix P̄ defines the quadratic weights to be associated
with each fault signal.

The faulty system SA and fault-free model SB are
(Xo,Rnu ,W )-input distinguishable in H measurements if

1

H

H∑
k=0

‖P̄ f(k)‖2 > γmin.

VI. SIMULATION RESULTS

In this section, simulation results are presented for the
testbed network of 14 buses from IEEE with the schematic
depicted in Figure 2. The data regarding physical constants
from the buses and generator was obtained from MAT-
POWER 5.0 [31]. We selected a sampling period Ts = 1s
to obtain the discrete version of the system corresponding to
the model in (2).

The first investigation was to concluded what theoretical
bound for the fault signal can be provided when using an
SVO-based strategy. To this end, the formulation in Section
V was used to solve the optimization problem in (9) and find
the value of γmin that guarantees detection depending on the
choice of parameter H . The results are depicted in Figure 3
and where obtained using the BMIBHB solver to solve the
concave quadratic problem. The main information to retain
from Figure 3 is that a large signal can be concealed in the
worst-case for this example if one uses a small value of past
measurements.

In order to contrast the theoretical bound with what
happens in a typical run (remark that the theoretical bound
assumes the worst possible combination of fault signal and
disturbance/noise inputs) a value H = 1 of past mea-
surements was considered for the next experiments. The
centralized solution was simulated with the use of a coprime
factorization. A pole placement command in Matlab was
used to design the gain K. Results for various constant faults
are presented in Figure 4. The main point of interest is the
fact that faults are detected in a small number of discrete time
instants (less than 10) when the fault constant goes above a
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Fig. 3. Evolution of the γmin as a function of the number of iterations.
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Fig. 4. Detection times for the centralized SVO-based detector employing
the coprime technique.

threshold that depends on the actual sequence of disturbance
and noise signals.

As a last simulation, 5 detectors with access to a subset
of the measurement vector is simulated for the same type of
faults. The detection times is depicted in Figure 5. Given that
the sets are built using less information, it was expected a
worse performance. In this example, the constant fault has to
be greater in one unity before a similar detection is achieved.
Given that it represents almost a 30% increase, there is a clear
need for further research and testing regarding this topic.

VII. CONCLUSIONS

This paper addressed the problem of detecting faults in
power networks as an example of a cyber-physical system.
By building on results from the literature, it was possible
to provide a detector technique based on SVOs that has
guarantees in terms of the worst undetectable fault that are
obtained using a distinguishability approach. Two scenarios
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Fig. 5. Detection times for the case of 5 decentralized SVO-based detectors
with access to a subset of local measurements.

are presented: a centralized mechanism that builds an SVO
for the coprime factorization of the model; and, the decen-
tralized version where just a subset of the measurements are
available to the various detectors spread over the network.

Simulation results have shown that for the IEEE 14 bus
testbed example, one should select an appropriate horizon
size as to avoid large undetected faults that are masked by
the disturbance and noise signals. In addition, the experi-
ments suggest that the when the detector is successful, it
takes a small number of discrete time steps to signal the
presence of a fault. In addition, the SVOs are capable of
detecting deviations from the model for the disturbances and
declaring faults whenever the model is not compatible with
the measurements.
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