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Abstract— In this paper, a method is given that reduces a
polynomial system matrix describing a discrete wave linear
repetitive process to an equivalent 2-D singular Fornasini-
Marchesini (SFM) model. It is shown that the transformation
linking the original polynomial system matrix with its associated
2-D SFM form is zero coprime system equivalence. The exact
nature of the resulting system matrix in singular form and the
transformation involved are established.

I. INTRODUCTION

An important aspect of the research in 2-D linear Systems
theory has been the connection between various 2-D singular
and nonsingular state space representations, e.g. [1] and the
references therein. Recently, the 2-D state space models
have been shown to represent linear repetitive processes and
the motivation being that the theory already developed in
the analysis and synthesis of the standard 2-D state space
models may serve to tackle the problems related to these
new classes of systems, see for example [2]. For example,
in [3] it was shown that the way to obtain conditions for
local controllability of discrete linear repetitive processes
was to convert the repetitive process state-space model to
that of a singular 2-D Roesser state-space model. Hence
the motivation to establish the connection between the state
space representations of the repetitive systems and those of
the standard 2-D models, e.g. [4], [2]. Also, in [5] it was
shown that a linear repetitive process is equivalent to a 2-
D singular Roesser model. An elementary operations based
method for transforming a polynomial matrix description
of linear repetitive processes to a 2-D nonsingular Roesser
model was proposed in [6]. This method was extended in [7]
to reduce so-called wave repetitive processes to 2-D singular
Roesser form. The reduction transformation involved is that
of Input/Output equivalence. In this paper, a method is
presented for the reduction of wave repetitive processes to
2-D Fornasini-Marchesini singular forms such that both the
Input/Output properties of the system and the zero structure
are preserved. Furthermore the exact equivalence transforma-
tion linking the original system with its associated singular
form is established. The type of equivalence used has been
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the subject of considerable attention in the literature, e.g., [8],
[9] and [10], [11].

II. DISCRETE LINEAR 2-D SYSTEMS AND REPETITIVE
PROCESSES

A singular version of the 2-D Fornasini-Marchesini state
space model (SFM) model [12] is given by

Ex(i+ 1, j + 1) = A1x(i+ 1, j) +A2x(i, j + 1)
+ A0x(i, j) +Bu(i, j),

y(i, j) = Cx(i, j) +Du(i, j),
(1)

where x(i, j) is the state vector, u(i, j) is the input vector,
y(i, j) is the output vector, E, A0, A1, A2, B, C and D are
constant real matrices of appropriate dimensions and E may
be singular.

Discrete linear repetitive processes evolve over the subset
of the positive quadrant in the 2-D plane defined by {(p, k) :
0 ≤ p ≤ α−1, k ≥ 0}, and the most basic state-space model
for their dynamics has the following form [2]

xk+1(p+ 1) = Axk+1(p) +Buk+1(p) +B0yk(p),

yk+1(p) = Cxk+1(p) +Duk+1(p) +D0yk(p),
(2)

where α denotes the number of samples along the pass.
On pass k, xk(p) ∈ Rn is the state vector, yk(p) ∈ Rm

is the pass profile vector, and uk(p) ∈ Rl is the vector of
control inputs. The simplest form of boundary conditions are
xk+1(0) = dk+1, k ≥ 0, where the n × 1 vector dk+1 has
known constant entries, and y0(p) = f(p), where f(p) is an
m× 1 vector whose entries are known functions of p.

The 2-D systems structure of a repetitive process arises
from the influence of the previous pass profile on the current
pass state and pass profile vectors, i.e., due to the presence
of the terms B0yk(p) and D0yk(p) in (2) respectively.

In the repetitive process model (2), the only previous pass
(k) contribution to the dynamics at p on the current pass
(k+ 1) comes from the same instance. An alternative, more
general, discrete linear repetitive process that also evolves
over {(p, k) : 0 ≤ p ≤ α − 1, k ≥ 0}, where the previous
pass (k) contribution to the dynamics at the given sample
p on the current pass (k + 1), comes from a pre-specified
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window of points and the state-space model is

xk+1(p+ 1) = Axk+1(p) + B̂uk+1(p)

+

wH∑
i=−wL

Biyk(p+ i),

yk+1(p) = Cxk+1(p) + D̂uk+1(p)

+

wH∑
i=−wL

Diyk(p+ i),

(3)

where on pass k, xk(p) ∈ Rn is the state vector, yk(p) ∈ Rm

is the pass profile vector, uk(p) ∈ Rl is the vector of control
inputs and wL, wH are positive integers.

On each pass in the model (3), the previous pass (k)
‘window’ of samples p − wL ≤ p ≤ p + wH , that moves
along the pass, contribute to the current pass k + 1. This
has led the term ‘wave’ repetitive process [13] to describe
examples represented by this model. Also setting wL = 0
and wH = 0 recovers the previous state-space model.

The boundary conditions for a wave repetitive process are
of the form

xk+1(0) = dk+1, k ≥ 0,

y0(p) = f(p), 0 ≤ p ≤ α− 1,

xk+1(i) = 0, yk(i) = 0,

i ∈ {−wL, . . . ,−1} ∪ {α, . . . , α− 1 + wH}, k ≥ 0,

(4)

where the n×1 vector dk+1 has known constant entries and
f(p) is an m× 1 vector whose entries are known functions
of p. One area where a wave repetitive process state-space
model arises is iterative learning control. This design method
has been especially developed for the many applications
where the same finite duration task is performed over and
over again. Each repetition is termed a pass (or trial in some
of the literature) and the duration of each trial is termed the
trial length.

In the simplest form of operation the system resets to the
starting location at the end of each pass and the next pass
can begin either immediately resetting is complete or after a
further period of time has elapsed. Once a pass is complete
all information generated over the pass length is available
for use in constructing the input for the next pass. The core
task in iterative learning control design, therefore, is how to
use this information to best effect in improving performance
from pass-to-pass and the most common route is to construct
the input for the next pass as the sum of the previous pass
input and a correction term computed using previous trial
data (or a finite number of previous trials).

Background references on iterative learning control can be
found in the references cited in, e.g., [14] which reports the
design and experimental verification of an iterative learning
control law designed in the repetitive process setting. Let
ek(p) denote the error between a supplied reference signal
and the output on each pass. Also let uk(p) denote the input

on pass k. Then one formula for computing the control input
on pass k + 1 is

uk+1(p) = uk(p) +Kek(p+ 1), (5)

where K is a scalar gain (or matrix in the multi-input multi-
output case). The term ek(p+1) is causal and hence imple-
mentable despite the shit in p because it can be computed for
all p on the completion of pass k. This is the novel feature
of iterative learning control and is termed ‘phase-lead’.

In some applications it is beneficial to include in the
control law further phase-lead terms, e.g., at p+ 2 and also
‘phase-lag’, e.g., at p − 1 terms. Such a control law fits
naturally within a wave repetitive process state-space model.

The similarity between wave repetitive processes and
the Roesser model is much less obvious and hence there
still remains the question: is it possible to convert a wave
repetitive process to Roesser form?. This question is the
subject of the future works with the emphasis on system
matrix equivalence.

III. SYSTEM EQUIVALENCE

Following the formulation of Rosenbrock [15], a general
linear 2-D system can be represented by the following system
of equations:

T (z1, z2)x = U(z1, z2)u,
y = V (z1, z2)x+W (z1, z2)u,

(6)

where x ∈ Rn is the state vector, u ∈ Rl is the input
vector and y ∈ Rm is the output vector, T,U, V and
W are polynomial matrices with elements in R[z1, z2] of
dimensions n× n, n× l,m× n and m× l respectively. The
operators z1 and z2 may have various meanings depending
on the type of system. For example, in delay-differential
systems z1 may represent a differential operator and z2 a
delay-operator. In the case of 2-D discrete systems, z1 and z2
represent horizontal and vertical shift operators, respectively,
but in this paper only the latter case is considered. The
system (6) gives rise to the system matrix in the general
form:

P (z1, z2) =

[
T (z1, z2) U(z1, z2)
−V (z1, z2) W (z1, z2)

]
, (7)

where
P (z1, z2)

[
x
−u

]
=

[
0
−y

]
. (8)

In the case when T (z1, z2) invertible, the system matrix
in (7) is said to be regular. The transfer-function matrix
corresponding to the system matrix in (7) is given by:

G(z1, z2) = V (z1, z2)T
−1(z1, z2)U(z1, z2) +W (z1, z2).

(9)
The concept of coprimeness plays a crucial role in the
theory of linear systems. In 2-D there are two distinct
notions of coprimeness, namely factor coprimeness and zero
coprimeness. The latter forms the basis of the definition
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of the transformation used in this paper and is defined as
follows.

Definition 1: Let D = K[z1, z2] be a polynomial ring in
z1 and z2 and K an arbitrary but fixed field. Two polynomial
matrices P1 and S1 of compatible dimensions, with elements
in D, are said to be zero left coprime (ZLC) if the matrix[

P1 S1

]
(10)

admits a right inverse over D.
Similarly, two polynomial matrices P2 and S2, of compatible
dimensions, with elements in D are said to be zero right
coprime (ZRC) if the matrix[

P2

S2

]
(11)

admits a left inverse over D.
There are a number of equivalence concepts in n-D systems
theory. Most of them are extensions from the 1-D to the n-
D setting. More recently, a transformation using a module
theoretic approach was used in [16]. A basic transformation
proposed for the study of 2-D system matrices is zero
coprime system equivalence as given in [8], [9]. This trans-
formation may be regarded as an extension of Fuhrmann’s
strict system equivalence [17] from the 1-D to the 2-D case
and is characterized by the following definition.

Definition 2: Let P(m, l) denote the class of (n +m) ×
(n + l) with polynomial system matrices in z1 and z2 with
real coefficients.Two polynomial system matrices P1(z1, z2)
and P2(z1, z2) ∈ P(m, l), are said to be zero coprime system
equivalent if they are related by the following[
M 0
X Im

]
︸ ︷︷ ︸

S1(z1,z2)

[
T1 U1

−V1 W1

]
︸ ︷︷ ︸

P1(z1,z2)

=

[
T2 U2

−V2 W2

]
︸ ︷︷ ︸

P2(z1,z2)

[
N Y
0 Il

]
︸ ︷︷ ︸

S2(z1,z2)

(12)
where P1(z1, z2), S2(z1, z2) are zero right coprime and
P2(z1, z2), S1(z1, z2) are zero left coprime and M(z1, z2),
N(z1, z2), X(z1, z2) and Y (z1, z2) are polynomial matrices
of compatible dimensions.
The concepts of controllability, observability and stability lie
at the heart of the theory of linear systems and these concepts
are characterized by the zero structure of their associated
system matrices, see for example [18]. The transformation of
zero coprime system equivalence plays a key role in many
aspects of 2-D systems theory, see for example ([9], [8], [11]
and [10]) as illustrated by the following lemma.

Lemma 1 (Johnson, [9]): The transformation of zero co-
prime system equivalence preserves the transfer-function
matrix and, the zero structure of the matrices:

Ti(z1, z2), Pi(z1, z2),
[
Ti(z1, z2) Ui(z1, z2)

]
,[

Ti(z1, z2)
−Vi(z1, z2)

]
, i = 1, 2.

IV. POLYNOMIAL SYSTEM MATRIX DESCRIPTIONS

Consider the singular Fornasini-Marchesini model given
in (1) and introduce the forward shift operators z1 and z2 in
the horizontal and vertical directions, i.e.

z1x(i, j) = x(i+ 1, j), z2x(i, j) = x(i, j + 1), (13)

respectively. Then the process dynamics of (1) can be written
in the polynomial matrix description form as:

PSFM (z1, z2)

[
x
−u

]
=

[
0
−y

]
, (14)

where the polynomial matrix over R[z1, z2],

PSFM (z1, z2) =

[
z1z2E − z1A1 − z2A2 −A0 B

−C D

]
(15)

is the system matrix of (1). The transfer-function matrix is
given by:

GSFM (z1, z2) = C(z1z2E − z1A1 − z2A2 −A0)
−1B +D.

(16)
Similarly, consider the wave linear repetitive process (3)

and introduce the state vector

ν(k, p) = [xTk (p) yTk (p)]
T . (17)

Using the shift relations (13) adopted to the repetitive pro-
cesses case, i.e.

z1wk(p) = wk+1(p), z2wk(p) = wk(p+ 1), (18)

where a signal w stands for a state x, or output y, or an input
u, the system matrix associated with (3) takes the form

PWR =


z1z2In − z1A −

wH∑
i=−wL

zi2Bi z1B̂

−z1C z1Im −
wH∑

i=−wL

zi2Di z1D̂

0m,n −Im 0m,l


(19)

with transfer-function matrix

GWR(z1, z2) =
[
0 Im

]
×

z1z2In − z1A −
wH∑

i=−wL

zi2Bi

−z1C z1Im −
wH∑

i=−wL

zi2Di


−1 [

z1B̂

z1D̂

]
,

(20)
provided the matrix inverse in (20) exists.

An alternative description of the system given in (3) is
to multiply the system equations by the shift operator zwL

2 .
This corresponds to multiplying the system matrix PWR in
(19) on the left by the transfer function preserving matrix zwL

2 In 0 0
0 zwL

2 Im 0
0 0 Il

 .
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P̃WR ≡
[

T̃WR ŨWR

−ṼWR 0m,l

]
=


z1z

wL+1
2 In − z1zwL

2 A −
q∑

j=0

zj2Bj−wL
z1z

wL
2 B̂

−z1zwL
2 C z1z

wL
2 Im −

q∑
j=0

zj2Dj−wL
z1z

wL
2 D̂

0m,n −Im 0m,l

 . (21)

V. REDUCTION OF THE WLRP TO THE SFM MODEL

Let t = n+m and let P̃WR(z1, z2) be a (t+m)× (t+ l)
be a polynomial system matrix given by (21). Then
P̃WR(z1, z2) can be written as:

P̃WR(z1, z2) =

1∑
i=0

q∑
j=0

zi1z
j
2P̃i,j , (P̃1,0 = 0), (22)

where P̃i,j are (t + m) × (t + l) constant matrices. Now
construct the matrices:

E =

[
0(q−1)(t+l),t+l 0(q−1)(t+l),t+l · · · 0(q−1)(t+l),t+l

P̃1,q P̃1,q−1 · · · P̃1,1

]
,

A0 =

[
−I(q−1)(t+l) 0(q−1)(t+l),t+l

0t+m,(q−1)(t+l) −P̃0,0

]
, A1 = 0,

A2 =

[
0(q−1)(t+l),t+l 0(q−1)(t+l),t+l · · · 0(q−1)(t+l),t+l

−P̃0,q −P̃0,q−1 · · · −P̃0,1

]

Ym =

[
0(q−1)(t+l)+t,m

Im

]
, Zl =

[
0l,q(t+l)−l Il

]
.

(23)
The resulting system matrix:

PSFM (z1, z2) ≡
[

TSFM USFM

−VSFM 0m,l

]
=

 z1z2E − z2A2 −A0 Ym 0
−Zl 0l,m Il
0m,t+l −Im 0m,l

 (24)

is clearly in the singular Fornasini-Marchesini form (15) with
A1 = 0.

Theorem 1: Let PSFM (z1, z2) is constructed and given
by (24). Then PSFM (z1, z2) is related to its corresponding
system matrix P̃WR in (21) by the zero coprime system
equivalence:

S1P̃WR = PSFMS2, (25)
where

S1 =


0(q−1)(t+l),t 0(q−1)(t+l),m

It 0t,m
0m+l,t 0m+l,m

0m,t Im

 ,

S2 =



zq−1
2 It 0t,l
0l,t zq−1

2 Il
zq−2
2 It 0t,l
0l,t zq−2

2 Il
...

...
It 0t,l
0l,t Il
ṼWR 0m,l

0l,t Il



(26)

with the matrix ṼWR of (21).
Proof: The matrix PSFM in (24) can be represented

in the form

PSFM =



It+l −z2It+l · · · 0 0 0 0
0 It+l · · · 0 0 0 0
...

...
. . .

...
...

...
...

0 0 · · · It+l −z2It+l 0 0

z1z2P̃1,q + z2P̃0,q z1z2P̃1,q−1 + z2P̃0,q−1 · · · z1z2P̃1,2 + z2P̃0,2 z1z2P̃1,1 + z2P̃0,1 + P̃0,0 FT
m 0

0 0 · · · 0 −Fl 0 Il
0 0 · · · 0 0 −Im 0


(27)

where Fk =
[
0k,t Ik

]
, from which it can be verified that (25) is satisfied, i.e.,

S1P̃WR = PSFMS2 =


0(q−1)(t+l),t 0(q−1)(t+l),l

T̃WR ŨWR

0m+l,t 0m+l,l

−ṼWR 0m,l

 (28)
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with ṼWR, T̃WR and ŨWR given in (21). Now it remains
to show the zero coprimeness of the matrices. The zero
right coprimeness of the matrices P̃WR and S2 follows
from the fact that the matrix

[
P̃WR

S2

]
=



T̃WR ŨWR

−ṼWR 0m,l

zq−1
2 It 0l,l
0 zq−1

2 It
zq−2
2 It 0l,l
0l,t zq−2

2 Il
...

...
It 0t,l
0l,t Il
ṼWR 0m,l

0l,t Il



(29)

contains a highest order minor which is equal to 1

obtained from the two block rows before the last
two block rows of (29). Similarly the zero left
coprimeness of the matrices PSFM and S1 follows
from the fact that the matrix

[
PSFM S1

]
given by:



It+l −z2It+l · · · 0 0 0 0 0 0
0 It+l · · · 0 0 0 0 0 0
...

...
. . .

...
...

...
...

...
...

0 0 · · · It+l −z2It+l 0 0 It+l 0

z1z2P̃1,q + z2P̃0,q z1z2P̃1,q−1 + z2P̃0,q−1 · · · z1z2P̃1,2 + z2P̃0,2 z1z2P̃1,1 + z2P̃0,1 + P̃0,0 FT
m 0 0 0

0 0 · · · 0 −Fl 0 Il 0 0
0 0 · · · 0 0 −Im 0 0 Im


(30)

has a highest order minor equal to 1 obtained by deleting
the columns (q− 1)(t+ l) + 1, . . . , (t+ l)q from the matrix
in (30).

Example 1: Consider the system matrix P̃WR in
(21) with wL = 1, wH = 1 and q = 2, i.e.,

P̃WR =

 z1z
2
2In − z1z2A −B−1 −B0z2 −B1z

2
2 z1z2B̂

−z1z2C z1z2Im −D−1 −D0z2 −D1z
2
2 z1z2D̂

0m,n −Im 0m,l

 (31)

It follows that

P̃WR = P̃0,0+ P̃0,1z2+z1z2P̃1,1+z
2
2P̃0,2+z1z

2
2P̃1,2, (32)

where

P̃0,0 =

 0 −B−1 0
0 −D−1 0
0 −Im 0

 , P̃0,1 =

 0 −B0 0
0 −D0 0
0 0 0

 ,
P̃0,2 =

 0 −B1 0
0 −D1 0
0 0 0

 ,

P̃1,1 =

 −A 0 B̂

−C Im D̂
0 0 0

 , P̃1,2 =

 In 0 0
0 0 0
0 0 0

 . (33)

Then the matrices in (23) are given by:

E =

[
0 0

P̃1,2 P̃1,1

]
, A0 =

[
−It+m 0

0 −P̃0,0

]
,

A2 =

[
0 0

−P̃0,2 −P̃0,1

]
,

Ym =

[
02(t+l)−m,m

Im

]
, Zl =

[
0l,2(t+l)−n Il

]
. (34)

The resulting system matrix PSFM (z1, z2) has the form
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PSFM =



In 0 0 −z2In 0 0 0 0
0 Im 0 0 −z2Im 0 0 0
0 0 Il 0 0 −z2Il 0 0

z1z2In −z2B1 0 −z1z2A −B−1 − z2B0 z1z2B̂ 0 0

0 −z2D1 0 −z1z2C z1z2Im −D−1 − z2D0 z1z2D̂ 0 0
0 0 0 0 −Im 0 Im 0
0 0 0 0 0 −Il 0 Il
0 0 0 0 0 0 −Im 0


, (35)

where the transformation matrices S1 and S2 are given by:

S1 =


0(t+l),t 0(t+l),m

It 0t,m
0m+l,t 0m+l,m

0m,t Im

 , S2 =


z2It 0t,l
0l,t z2Il
It 0t,l
0l,t Il
ṼWR 0m,l

0l,t Il


(36)

Furthermore it can be confirmed that

GSFM (z1, z2) = G̃WR(z1, z2) = GWR(z1, z2).

CONCLUSIONS

In this paper, an equivalent representation is obtained in
2-D Fornasini-Marchesini singular form for a given system
matrix arising from a discrete linear wave repetitive process.
The exact connections between the original system matrix
with its corresponding 2-D singular forms have been de-
veloped and shown to be zero coprime system equivalence.
The zero structures of the original polynomial system matrix
are preserved making it possible to analyze the polynomial
system matrix in terms of its associated 2-D singular form.
It is worth mentioning that in order to preserve the zero
structure, the resulting system matrices become quite large.
It will be an interesting problem to find a way to reduce
the size of these matrices while not sacrificing their zero
structure.
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