
A simple state-space realization method for a class of periodic encoders

Diego Napp1 Ricardo Pereira2 and Paula Rocha3

I. EXTENDED ABSTRACT

Convolutional codes [5] are an important type of error
correcting codes that can be represented as a time-invariant
discrete linear system over a finite field [10]. Since the
seminal work in [2] time-varying convolutional codes raised
a great interest as they can attain larger free distance than
their time-invariant counterpart with equivalent parameters
[1], [7], [8], [9].

In this work we aim at investigating time-varying convo-
lutional codes from a system theoretical point of view. In
particular, we study the realization of periodic encoders
by means of periodic state-space models with the aim of
efficient implementation. More concretely, in this preliminary
work we focus on period two and investigate under which
conditions a given periodic encoder obtained by alternating
two time-invariant encoders can be realized by a periodic
state-space system. We first observe that, in general, one
cannot expect to obtain a periodic state-space realization by
means of the individual realizations of each associated time-
invariant encoders. However, we give conditions for such
procedure to hold. The presented results are illustrated by
examples.

II. PRELIMINARIES

This section contains the background needed for the
development of our results. We first introduce time-invariant
and periodically time-varying convolutional codes and finally
state-space representations of time-invariant convolutional
codes.

A. Time-invariant convolutional codes

Let F be a finite field and n, k be positive integers with
k < n. A time-invariant convolutional code C of rate k/n is
a submodule Fn[z] described as

C = {v(z) ∈ Fn[z] : v(z) = G(z)u(z), u(z) ∈ Fk[z]}

where G(z) ∈ Fn×k[z] is a full column rank n × k
polynomial matrix over F, called the encoder, u(z) taking
values in Fk[z] is the information vector and v(z) is the
codeword.

1CIDMA - Center for Research and Development in Mathematics and
Applications, Department of Mathematics, University of Aveiro, Aveiro,
Portugal diego@ua.pt

2CIDMA - Center for Research and Development in Mathematics and
Applications, Department of Mathematics, University of Aveiro, Aveiro,
Portugal ricardopereira@ua.pt

3SYSTEC, Faculty of Engineering, University of Porto, Portugal
mprocha@fe.up.pt

The encoders of a code C differ by unimodular matrices
over F[z]. An encoder G(z) is called column reduced if
the sum of its column degrees attains the minimal possible
value among all the encoders of the same code.

We define the degree δ of a convolutional code as the
sum of the column degrees of one, and hence any, column
reduced encoder. A code C of rate k/n and degree δ is said
to be an (n, k, δ) code.

B. Periodically time-varying convolutional codes

In this work we consider convolutional codes C with 2-
periodic encoders. The definition of such encoders (or en-
coding maps) is introduced next together with the definition
of the corresponding 2-periodic (time-varying) convolutional
codes, see [2], [9], [12].

Definition 1: Given two polynomial matrices
G0(z), G1(z) ∈ Fn×k[z], the periodic encoding map
induced by G0 and G1 is defined as

φG0G1 : Fk[z] −→ Fn[z]
u(z) 7−→ v(z)

where v(z) =

+∞∑
i=0

viz
i and v2`+t =

(
Gt(z)u(z)

)
2`+t

,

t=0, 1, ` ∈ N0, and, moreover,
(
Gt(z)u(z)

)
2`+t

represents
the (2`+ t)-coefficient of the polynomial Gt(z)u(z).

The corresponding periodic convolutional code Cp is

Cp = {v(z) ∈ Fn[z] : v(z) = φG0G1(u(z)), u(z) ∈ Fk[z]}.
(1)

Such codes will be called 2-periodic convolutional codes.

C. State-space realizations

In systems theory, input-state-output models are mainly
used to describe the time evolution of the system signals,
which, in the discrete-time case, are time sequences.
Therefore, in the sequel, we sometimes identify an element
a(z) =

∑N
i=0 aiz

i ∈ F[z] with the finite support sequence
a0 = (a(z))0, a1 = (a(z))1, . . . , aN = (a(z))N formed by
its coefficients, and also use the notation a(`) to denote
a` = (a(z))`. The same applies for vectors with components
in F[z].

A state-space system{
x(`+ 1) = Ax(`) +Bu(`)

v(`) = Cx(`) +Du(`)
, l ∈ N0,
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denoted by (A,B,C,D), where A ∈ Fδ×δ, B ∈ Fδ×k, C ∈
Fn×δ and D ∈ Fn×k, is said to be a state-space realization
of the time-invariant (n, k, δ) convolutional code C if C
is the set of codewords v(z) ∈ Fn[z] identified with the
finite support output sequences v corresponding to finite
support input sequences u (i.e., to information sequences
u(z) ∈ Fk[z]) and zero initial conditions, i.e., x(0) = 0.

This definition implicitly assumes that (A,B,C,D) is
a minimal realization of C, i.e., that A has the minimal
possible dimension [11].

State-space realizations of convolutional codes can be ob-
tained as minimal state-space realizations of column re-
duced encoders. If G(z) ∈ Fn×k[z] is an encoder of C,
(A,B,C,D) is a state-space realization of G(z) if

G(z) = C(I −Az)−1Bz +D.

If G(z) =
∑
i∈NGiz

i, with Gi ∈ Fn×k, then

G0 = D, Gi = CAi−1B, i ≥ 1. (2)

Note that G(z) admits many realizations. It is well-known
that a state-space realization (A,B,C,D) of G(z) has
minimal dimension among all the realizations of G(z) if
(A,B) is controllable and (A,C) is observable, i.e., the

polynomial matrices
[
z−1I −A | B

]
and

[
z−1I −A

C

]
have, respectively, right and left polynomial inverses (in
z−1). The minimal dimension of a state-space realization
of G(z) is called the McMillan degree [6] of G(z) and it is
represented as µ(G).
The next proposition, adapted from [3], [4], provides a
state-space realization for a given (not necessarily column
reduced) encoder.

Proposition 1: Let G(z) ∈ Fn×k[z] be a polynomial
matrix with rank k and column degrees ν1, . . . , νk. Consider
δ̄ =

∑k
i=1 νi. Let G(z) have columns gi(z) =

∑νi
`=0 g`,iz

`,
i = 1, . . . , k where g`,i ∈ Fn. For i = 1, . . . , k define the
matrices

Ai =


0 · · · · · · 0

1
...

. . .
...

1 0

 ∈ Fνi×νi , Bi =


1
0
...
0

 ∈ Fνi ,

Ci =
[
g1,i · · · gνi,i

]
∈ Fn×νi .

Then a state-space realization of G is given by the matrix
quadruple (A,B,C,D) ∈ Fδ̄×δ̄×Fδ̄×k×Fn×δ̄×Fn×k where

A =

A1

. . .
Ak

 , B =

B1

. . .
Bk

 ,

C =
[
C1 · · · Ck

]
, D =

[
g0,1 · · · g0,k

]
= G(0).

In the case where νi = 0 the ith block of A and C are void
and in B a zero column occurs.

In this realization (A,B) is controllable and if G(z) is a
column reduced encoder, (A,C) is observable. Thus, the
McMillan degree of a column reduced encoder is equal to
the sum of its column degrees.

III. STATE-SPACE REALIZATIONS OF PERIODIC
CONVOLUTIONAL CODES

Definition 2: Let Σi = (Ai, Bi, Ci, Di), i = 0, 1, be two
state-space systems with the same dimension. We define a
periodic state-space system Σp as{

x(`+ 1) = A(`)x(`) +B(`)u(`)

v(`) = C(`)x(`) +D(`)u(`)
, l ∈ N0 (3)

where A(·), B(·), C(·), D(·) are periodic functions with pe-
riod 2, such that(

A(2j), B(2j), C(2j), D(2j)
)

= (A0, B0, C0, D0)

and (
A(2j + 1), B(2j + 1), C(2j + 1), D(2j + 1)

)
= (A1, B1, C1, D1), j ∈ N0.

The dimension of Σp is defined as the dimension of the state
vector x. In this case we say that Σp is obtained from Σ0

and Σ1.
Moreover, Σp is a realization of a periodic encoding map
φG0G1 if the output of Σp that corresponds to an input u(z)
is equal to φG0G1(u(z)), for all u(z) ∈ Fk[z].

Let Σ0 and Σ1 be two state-space realizations (of the same
dimension) of two encoders G0(z) and G1(z). It is possible
to show that the 2-periodic system Σp obtained from Σ0

and Σ1 is not always a state-space realization of φG0G1 .

However, in the next theorem we provide a sufficient condi-
tion for a periodic state-space system to be a realization of
a periodic encoding map.

Theorem 1: Consider two encoders G0(z) ∈ Fn×k[z]
and G1(z) ∈ Fn×k[z] with the same column degrees and
let Σi be the realizations of Gi(z), i = 0, 1 obtained by
Proposition 1. Then, the periodic state-space system Σp
obtained from Σ0 and Σ1 is a realization of the periodic
encoding map φG0G1 .
In case G0(z) and G1(z) have different column degrees the
following procedure can be applied in order to obtain a 2-
periodic state-space realization of the periodic encoding map
from state-space realizations of G0(z) and G1(z):

1) Let νi be the maximum degree of the i-th columns of
G0(z) and G1(z), i = 1, . . . , k;

2) Realize G0(z) and G1(z) as in Proposition 1 consid-
ering the columns of Gj(z) as gji (z) =

∑νi
`=0 g

j
`,iz

`,
i = 1, . . . , k, where some of the coefficients of higher
degree may be zero.

Using this the following theorem holds.
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Theorem 2: Let G0(z), G1(z) ∈ Fn×k[z] be two encoders
with state-space realizations Σ0 and Σ1, respectively, ob-
tained from the procedure above. Then the 2-periodic system
obtained from Σ0 and Σ1 is a state-space realization of the
periodic encoding map φG0G1 .

Example 1: Consider the encoders

G0(z) = G0
0 +G0

1z +G0
2z

2 =


1 1 1 + z

1 + z z2 1
1 1 + z 1
1 1 + z2 0


and

G1(z) = G1
0 +G1

1z +G1
2z

2 =


1 0 1

1 + z 1 + z2 1
1 + z2 1 1

1 1 + z 0

 .
Let ν1 = 2, ν2 = 2, ν3 = 1 be the maximum de-
grees of the first, second and third columns, respectively,
of G0(z) and G1(z). The state-space realizations Σ0 =
(A,B,C(0), D(0)) and Σ1 = (A,B,C(1), D(1)) of G0(z)
and G1(z), respectively, obtained from the procedure above,
are such that

A =


0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0

 B =


1 0 0
0 0 0
0 1 0
0 0 0
0 0 1



C(0) =


0 0 0 0 1
1 0 0 1 0
0 0 1 0 0
0 0 0 1 0

 D(0) =


1 1 1
1 0 1
1 1 1
1 1 0



C(1) =


0 0 0 0 0
1 0 0 1 0
0 1 0 0 0
0 0 1 0 0

 D(1) =


1 0 1
1 1 1
1 1 1
1 1 0

 .
The 2-periodic system obtained from Σ0 and Σ1 is a state-
space realization of φG0G1 .
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