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Abstract— Robust H∞ time-varying formation tracking
problems for high-order multi-agent systems with matched
and mismatched disturbances under directed topologies are
investigated. In this paper, the followers are required to form
a formation specified by a time-varying piecewise continuously
differentiable vector while tracking the trajectory of the leader
containing unknown control input with a H∞ disturbance at-
tenuation performance. Firstly, a distributed formation tracking
protocol is put forward which is constituted by using local
neighboring information. An approach to designing the protocol
for high-order multi-agent systems to achieve the robust H∞
time-varying formation tracking is proposed, where the forma-
tion tracking feasibility constraint is also derived. Stability of
the closed-loop multi-agent system under the protocol is proved.
Finally, the effectiveness of the theoretical results are verified
by a third-order simulation example.

I. INTRODUCTION

In the last decade, the formation control of multi-agent
systems have been extensively studied in both scientific and
engineering fields owing to their broad applications, such
as spacecraft formation [1], unmanned aerial vehicle (UAV)
formation [2], robot formation [3], autonomous underwater
vehicle (UAV) formation [4], etc. With the development
of the cooperative control, researchers are showing more
interest in the ways to study the formation control problems
of multi-agent systems by introducing the consensus theory
[5], [6], which has good scalability and less computation.
Therefore, studying the formation control problems for
multi-agent systems by combining the consensus theories is
of vital importance.

A basic structure of formation control method based on
consensus theories was put forward by Ren [7] for second-
order multi-gent systems. Based on the work in [7], further
studies have been made about the formation control problems
[8], [9]. The leader-follower formation tracking is another
form. In [10], a consensus tracking protocol was proposed
and the theoretical results were verified by an experiment
on the multiple mobile robot systems. In [11], the robust
consensus tracking problems were discussed for second-
order multi-agents with uncertainty nonlinearities. Distribut-
ed adaptive backstepping methods were introduced to deal
with the output consensus tracking [12], [13] and formation
tracking [14] problems for high-order nonlinear multi-agent
systems.

Note that disturbances exist in the most practical systems.
For high-order multi-agent systems, it is significant and
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challenging to investigate the formation control strategy
with good anti-disturbance performance. One knows that the
matched disturbances to the control input can be dealt with
completely by using strong robust methods, such as the slid-
ing mode control method. As for mismatched disturbances,
it is hard to compensate it. H∞ control theory is suitable to
solve this problem to get a desired disturbance attenuation
performance [23]. Recently, researchers are focusing on the
formation control and consensus control problems by the
combining H∞ control theory to achieve the disturbance
attenuation. Consensus control problems for multi-agent sys-
tems with a prescribed H∞ disturbance attenuation index
were studied in [15], [16] and the distributed H∞ consensus
tracking control problems were studied in [17], [18]. Besides,
Huang et al. [19] investigated the H∞ formation tracking
problems for multiple spacecraft systems.

Note that the above mentioned works [11], [12], [13], [14],
[17], [18], [19] only focused on the consensus tracking and
the time-invariant formation tracking problems, and time-
varying formation tracking is more precise to describe the
practical tasks such as the target enclosing where followers
track the trajectory of the leader and the formation between
the followers was time-varying. Time-varying formation
tracking problems have been investigated in [20], [21], [22].
However, the control inputs of the leaders in [20], [21], [22]
were assumed to be zero and disturbances were ignored. To
the best of our knowledge, time-varying formation tracking
problems for high-order multi-agent systems with leader’s
unknown control input and disturbance attenuation are still
open.

Motivated by the challenges mentioned above, this pa-
per studies the time-varying formation tracking problems
for high-order multi-agent systems with matched and mis-
matched disturbances, and leader’s unknown control input
based on H∞ control theories. Compared with the previous
works on formation tracking of multi-agent systems, the
contributions of the current paper lie in the following three-
fold. Firstly, the dynamics of the leader and the followers is
high-order, and the formation between the followers is time-
varying. In [20], [21], [22], the dynamics was second-order
cases. Although the agents have high-order dynamics [12],
[13], [14], the formations between the followers were time-
invariant. Secondly, the leader can have unknown control
input, and the designed protocol can deal with the un-
known control input and matched disturbances simultaneous-
ly. Time-varying formation tracking problems were studied
in [20], [21], [22], however, they do not considered the
effects of the disturbances and the leaders control input was
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ignored. Thirdly, the multi-agent system under the protocol
can achieve the H∞ disturbance attenuation performance.
Although H∞ disturbance attenuation can be achieved in
[17], [18], [19], they only studied the consensus tracking or
time-invariant formation tracking problems.

The rest of this paper is arranged as follows. In Section
II, some introductions to the graph theories are given and
the problem formulation is provided. The main results are
summarized in Section III and the simulation results is shown
with a example in Section IV. Finally, the conclusion is
drawn in Section V.

Throughout this paper, for simplicity of notation, let R be
the set of real numbers. Let IN be an identity matrix with
dimension N . 1N represents a column vector of size N with
1 as its elements. The matrix inequality A > B means that
A−B is positive definite. Let λmax(P ) and λmin(P ) be the
maximum and the minimum eigenvalues of a real symmetric
matrix P , respectively. The norm ∥x∥ of a vector x ∈ Rn

is defined as ∥x∥ = ∥x∥2 =
(∑n

i=1 |xi|2
) 1

2

. Let ⊗ be the
Kronecker product.

II. PRELIMINARIES AND PROBLEM DESCRIPTION

In this section, some basic concepts and results on graph
theory are introduced and the problem description is present-
ed.

A. Preliminaries

Let G = {V, E ,A} be a directed graph of order N , where
V = {v1, v2, · · · , vN} is the node set, E ⊆ {(vi, vj) :
vi, vj ∈ V, i ̸= j} is the edge set, and A = [aij ] ∈ RN×N

is the adjacency matrix with elements aij . An edge of G
is denoted by eij = (vi, vj), where node vi is called a
neighbor of node vj . If not otherwise specified, for all i, j ∈
{1, 2, · · · , N}, aij = 1 if and only if eji ∈ E , and aij = 0
otherwise. Let Ni = {vj ∈ V : eji ∈ E} represent the neigh-
bor set of node vi. Let degin(vi) =

∑N
j=1 aij denote the

in-degree of node vi. Denote by D = diag{degin(vi), i =
1, 2, · · · , N} the degree matrix of G. The Laplacian matrix
L associated with G is defined by L = D − A. A directed
path from node vi1 to node vir is a sequence of distinct
edges of the form (vi1 , vi2),(vi2 , vi3),· · · ,(vik , vik+1

) where
vik ∈ V (k = 1, 2, · · · , r− 1). More details on graph theory
can refer to [24].

Lemma 1: ([23]) For any vectors x(t), y(t) of appropriate
dimensions and any positive definite matrix Z of appropriate
dimension, the following inequality holds:

±2xT (t)y(t) ≤ x(t)TZx(t) + yT (t)Z−1y(t). (1)
Lemma 2: (Schur Complement Formula) ([23]) Given a

symmetric matrix S =

[
S11 S12

ST
12 S22

]
, the following state-

ments are equivalent:
(i) S < 0;

(ii) S11 < 0, S22 − ST
12S

−1
11 S12 < 0;

(iii) S22 < 0, S11 − S12S
−1
22 ST

12 < 0.

B. Problem description

Consider a high-order multi-agent system with N agents.
The directed interaction topology is described by G. For
i, j ∈ {1, 2, · · · , N} the interaction strength is denoted by
aij .

Definition 1: An agent is called a leader if it has no
neighbors. An agent is called a follower if it has at least
one neighbor.

Let F = {1, 2, · · · , N − 1} be the follower subscript set.
The dynamics of the follower i is described by{

ẋi(t) = Axi(t) +Bui(t) +B1w(t) +B2∆(t),

yi(t) = Cxi(t),
(2)

where xi(t) = [xi,1(t), xi,2(t), · · · , xi,n(t)]
T ∈ Rn, ui(t) ∈

Rq and yi(t) ∈ Rm are states, control input and output
vectors of agent i (i ∈ F ), respectively, wi(t) ∈ Rp and
∆(t) ∈ Rq are the mismatched and matched disturbances,
A ∈ Rn×n, B ∈ Rn×q , C ∈ Rm×n, B1 ∈ Rp×p, B2 = BM ,
M ∈ Rq×q . The dynamics of leader labeled by N is
described by{

ẋN (t) = (A−BK1)xN (t) +BuN (t),

yN (t) = CxN (t),
(3)

where K1 ∈ Rq×n, xN (t), uN (t) and yN (t) are states,
control input and output vectors. Suppose that uN (t) is
bounded and xN (t) is bounded under uN (t).

Assumption 1: The item wi(t) ∈ Rp is the unknown
external disturbance that belongs to L2[0,∞), that is,∫∞
0

(wT (t)w(t))dt < +∞.
A time-varying formation is specified by a vector h(t) =

[hT
1 (t), h

T
2 (t), · · · , hT

N−1(t)]
T ∈ Rn×(N−1) with hi(t) ∈ Rn

piecewise continuously differentiable.
From Definition 1, the Laplacian matrix L of a directed

topology G can be formed as follows

L =

[
L1 L2

0 0

]
, (4)

where L1 = [L1,i,j ] ∈ R(N−1)×(N−1) and L2 = [L2,i,N ] ∈
R(N−1)×1 (i, j ∈ F ).

Consider the following robust H∞ time-varying formation
tracking protocol:

ui(t) = −K1xi(t)− κ(t)sgn(si(t))

−
N−1∑
j=1

aijK2 ((xi(t)− hi(t))− (xj(t)− hj(t)))

−aiNK2 (xi(t)− hi(t)− xN (t)) ,

si(t) =
N−1∑
j=1

aijK2 ((xi(t)− hi(t))− (xj(t)− hj(t)))

+aiNK2 (xi(t)− hi(t)− xN (t)) ,

(5)

where i ∈ F , K2 ∈ Rq×n is a constant gain matrix, and κ(t)
is a positive function which is to be designed later, sgn(·)
represents the sign function.
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Let ςi(t) = xi(t) − hi(t), ξi(t) = ςi(t) − xN (t) and
ξ(t) = [ξ1(t), ξ2(t), · · · , ξN−1(t)]

T . Under protocol (5), the
closed loop dynamics of multi-agent system (2) and (3) can
be described by

ξ̇i(t) = (A−BK1)ξi(t)−
N−1∑
j=1

aijBK2 (ξi(t)− ξj(t))

−aiNBK2ξi(t) +B1w(t) + (A−BK1)hi(t)−ḣi(t)

−κ(t)Bsgn(si(t))−BuN (t)−BM∆(t),

ẋN (t) = (A−BK1)xN (t) +BuN (t),

(6)

Rewrite (6) to a compact form as:

ξ̇(t) = (IN−1 ⊗ (A−BK1)− L1 ⊗BK2) ξ(t)

+ (IN−1 ⊗B1)w(t)− (IN−1 ⊗B) (1N−1uN (t))

−κ(t) (IN−1 ⊗B) sgn(s(t))− (IN−1 ⊗BM) ∆̄(t)

+
(
(IN−1 ⊗ (A−BK1))h(t)− ḣ(t)

)
,

ẋN (t) = (A−BK1)xN (t) +BuN (t), (7)

where w(t) = [w1(t), w2(t), · · · , wN−1(t)]
T and ∆̄(t) =

[∆(t),∆(t), · · · ,∆(t)]T = 1N−1∆(t).
Definition 2: Multi-agent system described by (2) and (3)

is said to achieve the robust H∞ time-varying formation
tracking if the following two conditions hold.
(i) Define ζ̄i(t)=Cξi(t) and ζ̄(t)=[ζ̄1(t), ζ̄2(t), · · · , ζ̄n(t)]T .
The following inequality holds:∥∥Tζ̄w(s)

∥∥
∞ = sup

v∈
σ̄(Tζ̄w(jv))

= sup
0̸=w(t)∈L2[0,∞)

∥∥ζ̄(t)∥∥
2

∥w(t)∥2
< γ,

(8)

where i ∈ F , Tζ̄w(s) represents the closed-loop transfer
function matrix from w(t) to ζ̄(t), γ > 0 is a given H∞
performance index, and σ̄(·) denotes the largest singular
value.
(ii) For any given bounded initial states xi(0) ∈ Rn, there
exists a nonnegative constant ε such that

lim
t→∞

∥xi(t)− xN (t)− hi(t)∥ ≤ ε,∀i ∈ F, (9)

where ε is called the robust H∞ time-varying formation
tracking error bound.

The current paper are mainly focusing on the following
two problems for the multi-agent system described by (2)
and (3) under protocol (5): (i) what conditions should be
satisfied to achieve the robust H∞ time-varying formation
tracking, and (ii) how to design the protocol (5) to achieve
the robust H∞ time-varying formation tracking.

III. MAIN RESULTS

In this section, an algorithm is firstly put forward to give
the procedures to design the protocol (5) to achieve the
robust H∞ time-varying formation tracking. Then a theorem
is presented to prove the stability of the algorithm.

Assumption 2: For each follower, there exists at least one
leader that has a directed path to it.

With Assumption 2, one can obtain the following lemmas,
which are useful in analyzing the robust H∞ time-varying
formation tacking issues.

Lemma 3: ([9]) For the directed interaction topology G,
all eigenvalues λi of L1 have positive real parts, which can
be written as λ(L1) = {λ1, λ2, · · · , λN−1} , Re(λ1) ≤
Re(λ2) ≤ · · · ≤ Re(λN−1); each entry of −L−1

1 L2 is
nonnegative and each row of −L−1

1 L2 has a sum equal to
one, that is −L−1

1 L2 = 1N−1.
Lemma 4: ([9]) Let L1 be the Laplacian matrix of a

directed interaction topology between the followers with a
spanning tree, the root of which is the leader N . There exists
a positive definite matrix Θ such that

LT
1 Θ+ΘL1 ≥ 2δ0Θ, (10)

where δ0 is a positive scalar and Θ =
diag{θ1, θ2, · · · , θN−1} = L−1

1 1N−1.
Based on Assumption 2, and Lemmas 3 and 4, in the

following, a design procedure with three steps is given to
determine the control parameters of protocol (5).

Algorithm 1: To achieve the robust H∞ time-varying for-
mation tacking for multi-agent system (2) and (3), protocol
(5) can be designed in the following procedure.
Step 1: Choose proper gain matrix K1 design the motion
modes of the leader and the followers. For the predefined
hi(t), check the following time-varying formation tracking
feasibility condition(

(A−BK1)hi(t)− ḣi(t)
)
∈ L2[0,∞). (11)

If condition (11) holds, then continue; else, if one cannot find
a proper K1 to make (11) hold, the robust H∞ time-varying
formation tracking cannot be achieved for multi-agent system
(2) and (3) under protocol (5).
Step 2: Estimate the maximum bound of the control input
of the leader and the mismatched disturbances, and choose
the positive function and choose the positive function κ(t)
to satisfy κ(t) ≥ ∥uN (t)∥∞ + ∥M∆(t)∥∞.
Step 3: Choose proper κ0, δ1 and δ2 to make the following
LMI has positive solution Q,[

Ξ0 Q

∗ −(δ2I + c1C
TC)

−1

]
< 0, (12)

where Ξ0 = QĀT + ĀQ− δ0κ0BBT + c0B1B
T
1 + δ1I , Ā =

A − BK1, Q = QT > 0, c0 = γ−2λmax(Θ)λmax(L1L
T
1 ),

c1 = λmax(Θ) and γ is a designed H∞ disturbance at-
tenuation performance index. Then K2 can be given by
K2 = κ0B

TQ−1.
Theorem 1: Suppose that Assumptions 1 and 2 and the

formation tracking feasibility condition (11) are satisfied.
Multi-agent system described by (2) and (3) with one leader
of unknown control input under the protocol (5) designed in
Algorithm 1 achieves the robust H∞ time-varying formation
tracking.
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Proof: Let ζ(t) = L1ξ(t). It follows from (7) that

ζ̇(t)=(IN−1 ⊗ (A−BK1)− L1 ⊗BK2) ζ(t)

+ (L1 ⊗B1)w(t) + µ(t)−κ(t) (L1 ⊗B) sgn(s(t))

−(L1 ⊗BM) (1N−1∆(t))−(L1 ⊗B) (1N−1uN (t)) ,

(13)

where µi(t) = (A−BK1)hi(t)− ḣi(t) and µ(t) = [µ1(t),
µ2(t), · · · , µN−1(t)]

T .
Choose a Lyapunov function candidate as V (t) =

ζT (t)(Θ⊗ P )ζ(t), where P = PT > 0 and Θ is defined
in Lemma 4. Choose K2 = κ0B

TP . Taking the derivatives
of V (t) gives

V̇ (t) = ζT (t)
(
Θ⊗ (ĀTP + PĀ)

−(LTΘ+ΘL1)⊗ κ0PBBTP
)
ζ(t)

+2ζT (t) (ΘL1 ⊗ PB1)w(t) + 2ζT (t) (Θ⊗ P )µ(t)

−2κ(t)ζT (t) (ΘL1 ⊗ PB) sgn(s(t))

−2ζT (t) (ΘL1 ⊗ PBM) (1N−1∆(t))

−2ζT (t) (ΘL1 ⊗ PB) (1N−1uN (t)) .

(14)

By Lemma 4, one gets

−ζT (t)
(
(LTΘ+ΘL1)⊗ κ0PBBTP

)
ζ(t)

≤ −ζT (t)
(
Θ⊗ κ0δ0PBBTP

)
ζ(t).

(15)

It follows from Lemma 1 that

2ζT (t) (ΘL1 ⊗ PB1)w(t)

≤ γ−2ζT (t)
(
ΘL1L

T
1 Θ⊗ PB1B

T
1 P

)
ζ(t) + γ2wT (t)w(t)

≤ γ−2λmax(Θ)λmax(L1L
T
1 )ζ

T (t)
(
Θ⊗ PB1B

T
1 P

)
ζ(t)

+γ2wT (t)w(t),

(16)

and

2ξT (t) (Θ⊗ P )µ(t)

≤ ξT (t) (Θ⊗ δ1PP ) ξ(t) +
λmax(Θ)

δ1
µT (t)µ(t),

(17)

where γ is the H∞ disturbance attenuation performance
index, δ1 is a positive scalar.

Note that

−κ(t)ζT (t) (ΘL1 ⊗ PB) sgn(s(t))

= −κ(t)
N−1∑
i=1

θjζ
T
i PB(

N−1∑
j=1

ai,j
(
sgn

(
κ0B

TPζi(t)
)
.

−sgn
(
κ0B

TPζj(t)
))

+ ai,N
(
sgn

(
κ0B

TPζi(t)
)))

≤ −κ(t)
N−1∑
i=1

θjai,N
∥∥ζTi PB

∥∥
1
.

(18)

Besides, one has

−ζT (t) (ΘL1 ⊗ PBM) (1N−1∆(t))

= [ζT1 (t), ζ
T
2 (t), · · · , ζTN−1(t)]


θ1a1,NPBM∆(t)
θ1a2,NPBM∆(t)

...
θ1aN−1,NPBM∆(t)


≤

N−1∑
i=1

θjai,N
∥∥ζTi PB

∥∥
1
∥M∆(t)∥∞

(19)

and

−ζT (t) (ΘL1 ⊗ PB) (1N−1uN (t))

= [ζT1 (t), ζ
T
2 (t), · · · , ζTN−1(t)]


θ1a1,NPBuN (t)
θ1a2,NPBuN (t)

...
θ1aN−1,NPBuN (t)


≤

N−1∑
i=1

θjai,N
∥∥ζTi PB

∥∥
1
∥uN (t)∥∞.

(20)

Therefore, it follows from (14) to (20) that

V̇ (t) ≤ ζT (t) (Θ⊗ ( ĀTP + PĀ− δ0κ0PBBTP

+c0PB1B
T
1 P + δ1PP )

)
ζ(t)

+γ2wT (t)w(t) +
λmax(Θ)

δ1
µT (t)µ(t)

(21)

Let Q = P−1. By Lemma 2, if LMI (12) is satisfied, one
can get the following LMI holds:

ĀTP + PĀ− δ0κ0PBBTP + c0PB1B
T
1 P + δ1PP

+c1C
TC + δ2I < 0.

(22)

To studied the H∞ attenuation performance with respect to
the disturbance w(t), µ(t) is not considered here. Define

J(T ) =

T∫
0

(∥∥ζ̄(τ)∥∥
2
− γ2∥w(τ)∥2

)
dτ. (23)

Then one can get:

J(T ) =
T∫
0

(
ζT (τ)

(
IN−1 ⊗ CTC

)
ζ(τ)− γ2∥w(τ)∥2

)
dτ

+
T∫
0

V̇ (τ)dτ − V (T ).

(24)

Substituting (21) and (22) into (26) gives

J(T ) ≤ −
T∫

0

δ2ζ
T (τ)ζ(τ)dτ − V (T ) < 0. (25)

Let T → ∞, and one gets
∞∫
0

∥∥ζ̄(τ)∥∥
2
dt < γ2

∞∫
0

∥w(τ)∥2dt,∀w(t) ∈ L2[0,∞), (26)
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which implies that the closed-loop multi-agent system (2)
and (3) under protocol (5) has H∞ disturbance attenuation
performance with an index γ.

Moreover, from (23) and (24), it can be obtained that

V̇ (t) ≤ −δ2ζ
T (t) (Θ⊗ I) ζ(t)

+γ2wT (t)w(t) +
λmax(Θ)

δ1
µT (t)µ(t).

(27)

Because w(t), µ(t) ∈ L2[0,∞), therefore, there exists a
positive scalar υ0, such that

γ2

t∫
0

wT (τ)w(τ)dτ +
λmax(Θ)

δ1

t∫
0

µT (τ)µ(τ)dτ ≤ υ0. (28)

Integrating (27) gives

V (t) ≤ V (0)+γ2
t∫
0

wT (τ)w(τ)dτ+
λmax(Θ)

δ1

t∫
0

µT (τ)µ(τ)dτ

≤ V (0) + υ0.
(29)

Denote ε =
√

(V (0) + υ0)/λmin{Θ⊗ P}σ̄(L1) and it can
be obtained that
∥xi(t)− xN (t)− hi(t)∥

= ∥ξi(t)∥ ≤ ∥ξ(t)∥ ≤ ∥ζ(t)∥√
σ̄(L1)

≤ V (t)√
λmin{Θ⊗P}σ̄(L1)

≤ ε.

(30)

By the Definition 2, one can get that the robust H∞ time-
varying formation tracking is achieved. This completes the
proof of Theorem 1.

IV. NUMERICAL SIMULATIONS

In this section, a simulation example is provide to illustrate
the effectiveness of the proposed robust H∞ time-varying
formation tracking protocol in the previous sections.

3

4

1 2

Fig. 1: Directed interaction topology G.

Consider a third-order multi-agent system with four agents
with interaction topology G (see Fig. 1) with n = 3, where
three of them are followers and the other one is leader, which
means N = 4. Let xi(t) = [xi,1(t), xi,2(t), xi,3(t)]

T be the
states of agent i (i ∈ {1, 2, · · · , 4}). The system matrices

are described as A =

 0 1 0
0 0 1
0 0 0

, B = [0, 0, 1]T , B1 =

[0, 0.5, 0]T and C = [1, 0, 0]. Choose K1 = [0, 1, 0], and to
satisfy the condition (11), one can design the time-varying
formation vector as hi(t), where i ∈ F and

hi(t) =


sin(t+ 2π(i− 1)/3)

cos(t+ 2π(i− 1)/3)

− sin(t+ 2π(i− 1)/3)

 .

For simplicity, the external disturbance are chosen as ∆(t) =
[∆1(t),∆2(t),∆3(t)]

T = [0.2 sin(t), 0.2 sin(t), 0.2 sin(t)]T

and w(t) = [w1(t), w2(t), w3(t)]
T = [0.2ω(t), 0.5ω(t), 0.8ω

(t)]T , where ω(t) is the energy-limited white noise which
works within the initial two seconds. The unknown control
input is designed as u4(t) = −x4,1(t)− x4,2(t)− x4,3(t) +
0.5t. Note that the leader is a stable system under u4(t)
and one can get ∥u4(t)∥ ≤ 0.6 from simulation results.
Therefore, κ(t) can be determined as κ(t) = 0.8. Choose
δ0 = 0.4, δ1 = δ2 = 0.01, γ = 5, c0 = 0.8583, c1 = 2, κ0 =

100. Solving (12) gives P =

 4.6801 2.5026 0.7280
2.5026 1.6516 0.5225
0.7280 0.5225 0.2222


and K2 = [72.7964, 52.2504, 22.2174].
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Fig. 2: Curve of the trajectory of the leader.

Fig. 2 shows the trajectory of the leader, where the states
are remarked by circles at t = 0s, t = 8s, t = 16s and
t = 20s, respectively.
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Fig. 3: States snapshots of the followers and the leader.

Fig. 3 shows the states snapshots of the three followers and
the leader at different time, respectively, where the states of
the followers are marked by pink square, green five pointed
star and red triangle, respectively. The curve of the robust
H∞ time-varying formation tracking error ξF (t) is shown
in Fig. 4. Fig 5 displays the H∞ mismatched disturbance
attenuation performance. From Fig. 2 to Fig. 5, one sees that
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Fig. 4: Curve of the robust H∞ time-varying formation
tracking error ξ(t).
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Fig. 5: Curve of H∞ disturbance attenuation performance.

the state of the leader lies in the center of the triangle, and the
moving direction of the leader is time-varying. Besides, from
Figs. 4 and 5, one obtains that conditions (8) and (9) hold.
Therefore, the desired robust H∞ time-varying formation
tracking is achieved.

V. CONCLUSIONS

Robust H∞ time-varying formation tracking problems for
high-order multi-agent systems were studied. Matched and
mismatched disturbances were considered simultaneously.
A distributed formation tracking protocol was proposed
by using local neighboring information. An approach to
determine the parameters in the protocol was presented.
The formation tracking feasibility constraint was derived.
Stability of the closed-loop multi-agent system under the
protocol was proved.
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