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Abstract— This paper considers the design of linear quadratic
optimal controller for Markovian jump linear systems (MJLSs)
over multiple lossy communication channels with correlated
packet loss. Considering the Gilbert-Elliott channel model
which takes into account the temporal correlation of the data
packet losses, the finite horizon controller and the infinite
horizon controller are designed under TCP-like protocol. Ex-
istence of the infinite horizon controller is investigated by
analyzing convergence of the cost function. Further, we derive
the finite horizon and the infinite horizon controller for a linear
time invariant (LTI) system as a special case. Finally, for the
infinite horizon case, we demonstrate the dependence of the
convergence of the optimal cost on the control packet arrival
probability.

I. INTRODUCTION

Control over communication networks or Networked Con-
trol Systems (NCSs) have attracted considerable attention
recently, owing to their numerous applications [1]–[3]. These
are systems where different subsystems, i.e., controllers, ac-
tuators and sensors are spatially distributed and are connected
through networks.

Introduction of communication networks leads to some
serious issues, such as data packet loss [4] and random time
delay [5]. Packet loss is generally modeled as independent
and identically distributed (i.i.d.) Bernoulli process for the
sake of mathematical simplicity [4]. However, realistic com-
munication channels possess memory and i.i.d. Bernoulli
model does not capture this [6]. In order to represent the
temporal correlation in a channel, one can instead use the
Gilbert-Elliott channel model [6], [7]. This model is based
on a two state Markov chain. Depending on the availability of
acknowledgement of data packet reception, there are two dif-
ferent types of protocols used by communication networks:
TCP-like protocols and UDP-like protocols [4]. For a TCP-
like protocol, there is an acknowledgement mechanism to
know whether a packet is received or not. On the contrary,
in a UDP-like protocol there is no such acknowledgement
available.

The design of the Linear Quadratic Gaussian (LQG)
controller for an NCS using a TCP-like protocol has been
studied in [4] & [8]. In [8], considering Bernoulli packet
loss, it has been shown that there exists a critical probability
for packet arrival below which the closed loop system can
not be stabilized. The LQG control problem for a UDP-
like protocol has also been considered in [4], wherein it
has been shown that while the separation principle holds
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true for a TCP-like, it fails for a UDP-like one. [9] deals
with the design of the LQG controller for multi-input multi-
output (MIMO) systems with Bernoulli packet loss. It is
proved that the separation principle still holds true for the
multi-channel case, when the protocol is TCP-like. In [6],
the LQG control problem with Markovian packet losses has
been considered. In [10], it has been shown that for a scalar
system with quantization error, packet loss and computation
delay, the estimator and the controller can not be designed
independently. The LQG controller with correlated packet
loss is designed in [11]. Considering consecutive packet
losses, sub-optimal controllers are designed to reduce the
complexity of the optimal controller.

In this paper, we investigate the optimal linear quadratic
control problem of a Markovian jump linear system (MJLS)
over multiple channels. An MJLS consists of a set of linear
subsystems, where the system dynamics switches between
the dynamics of the different subsystems according to a
Markov chain. In many practical systems, such as robotic
manipulators, aircraft systems, economic systems etc., the
system structure changes due to various random factors,
e.g., unforeseen environmental changes, random component
failure, sudden change in operating point of the nonlinear
system etc. and can be modeled as MJLS [12]. This work
focuses on the control packet erasures and assumes that
the sensor-to-controller channels are loss-less. We consider
the case, where each of the communication channels have
memory and model the channels using the Gilbert-Elliott
channel model, wherein, packet losses are governed by a two
state Markov chain. Here, the zero input strategy is followed,
i.e., when the actuators do not receive control packets from
the control unit, then the control input is zero. We concentrate
on the TCP-like case, i.e., it is possible to know whether
a packet sent from the controller has been received by the
actuator or not.

The paper is organized as follows. In Section II., the
problem is formulated along with an introduction to the
Gilbert Elliott channel model. Section III. deals with design
of the Finite horizon controller and the Infinite horizon
controller. Convergence of the infinite horizon cost has also
been investigated. In section IV. with a numerical example
we demonstrate our results. Finally, section V. concludes
the paper.

Notation: diag{a1, ..., an} represents diagonal matrix
with a1, ..., an as diagonal elements, ||x|| := (xTx)1/2

denotes the Euclidean norm, ||x||P := (xTPx)1/2 is the
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weighted Euclidean norm, ρ(A) represent spectral radius of
operator A. L2([0,∞),Rn) is the space of square-summable
functions xk from Rn with k = 0, 1, ...,∞. For a matrix P ,
P ≥ 0 and P > 0 implies P is positive semi-definite and
positive definite, respectively. The power set, i.e., set of all
the subsets of set I is denoted by 2I . Im×m represents
the identity matrix of order m.

II. PROBLEM FORMULATION

Let us consider the following discrete-time Markovian
jumped linear system:

xk+1 = A(rk)xk +B(rk)uak (1)

where xk ∈ X ⊆ Rn is the state vector, uak ∈ U ⊆ Rm is the
control input applied by the actuator, rk ∈ D , {1, 2, ...,M}
with M < ∞ is a irreducible and homogeneous Markov
chain. Transition probabilities of the Markov chain are ex-
pressed in the transition probability matrix Λ = [pij ], where

pij = P (rk+1 = j|rk = i); ∀i, j ∈ D, k = 0, 1, 2, ...

Throughout the paper, it is assumed that state of the system
xk and Markov chain state rk are directly accessible to the
controller.
Let uk ∈ Rm be the controller output, which has been sent to
the actuators through lossy channels. Following expression
relates uk and uak :

uak = ξkuk (2)

where, ξk = diag{vk,1, vk,2, ..., vk,m} represents the packet
loss condition of all the channels in the controller-to-actuator
path.
Here, vk,i(i ∈ {1, 2, ..,m}) are random variables, which
correspond to packet loss condition in the ith channel. vk,i is
such that vk,i = 0 implies that a packet is lost and vk,i = 1
implying a successfull packet delivery. Here, we consider the
case, where packet loss in each channel can be temporally
correlated, which can modeled by the Gilbert-Elliott channel
model. This model is based on a two-state Markov chain,
where one state represents good state, i.e., successfull packet
arrival and the other one represents bad state, i.e., packet loss
[6], [7].

Now, let us define : v̄l = P (vk,l = 1
∣∣vk−1,l =

1), µ̄l = P (vk,l = 1
∣∣vk−1,l = 0). So, the transition

probabilities of the Markov states can be written by the
following transition probability matrix:[

P (vk+1,i = 0|vk,i = 0) P (vk+1,i = 1|vk,i = 0)
P (vk+1,i = 0|vk,i = 1) P (vk+1,i = 1|vk,i = 1)

]
=

[
1− µ̄i µ̄i

1− v̄i v̄i

] (3)

Note 1. For the ith channel, if there is no information
available regarding the past packet loss conditions
(vj,i; j < k), then the probability of a data packet
loss (or, successful packet arrival) at any instant k will
always be same and can be written as [6]:

P
(
vk,i = 0

)
= (1− v̄i)/(1 + µ̄i − v̄i)

P
(
vk,i = 1

)
= µ̄i/(1 + µ̄i − v̄i)

(4)

Note 2. It should be clearly noted that {rk} and {vk,i},
∀i ∈ {1, 2, ...,m} are independent Markov processes.

Let us now define a few parameters which will be used
in the following section. Let all the actuators are indexed
by the set G = {1, 2, ...,m}. Subsets Ii ⊆ G , ∀i ∈
{0, 1, 2, ..., (2m − 1)} are used to indicate which actuators
have successfully received the control command. For 0 ≤
i ≤ 2m − 1, Ii ⊆ G is defined as follows:

Ii =
{
p ∈ G : pth entry in the m-bit binary

representation of i is 1, where
position number of the Least

Significant Bit (LSB) is assumed to

be 1
}

The nonzero entries of Ii; ∀i ∈ {0, 1, ..., (2m − 1)} cor-
respond to those actuators that successfully receive control
command. For example, I3 = {1, 2} indicates that 1st and
2nd actuators receive control command.
Following are a few related definitions:

(a) N (i) = diag
{
ajj
}

; where ajj =

{
1, if j ∈ Ii

0, if j /∈ Ii

for j = 1, 2, ...,m

(b) Pi
l = Π

j∈Il

P
(
vk,j = 1

∣∣ξk−1 = N (i)
)

Π
j /∈Il

P
(
vk,j =

0
∣∣ξk−1 = N (i)

)
(c) Let Yk(.) be a map from 2G to a space which is closed

under addition. Now, Li(.) can be defined as follows:

Li(Yk+1(.)
)

=

2m−1∑
l=0

Pi
lYk+1(l) (5)

In the absence of any past information regarding packet
loss status, Pi

l takes the following form (using Note 1.):
P̂l = Π

j∈Il

P (vk,j = 1) Π
j /∈Il

P (vk,j = 0).

Remark 1. For the single-channel case, ξk can only
be equal to 0m×m (when a packet gets lost in the channel)
or 1m×m (when a packet is successfully received), i.e.,
partial information loss is not possible. However, in multi-
channel case, as all the channels are independent, partial
information loss is possible.

Now, for the TCP-like protocol, the information set Ik
available to the controller at the kth time-index can be
defined as follows:

Ik = {x0, ..., xk, r0, ..., rk, ξ0, ...ξk−1} (6)

Let us define the control policy ζ as follows: ζ =
{ζ0, ..., ζk, ...}, where ζk : Ik → U maps the information
set Ik to some control input U .

The rest of the paper focuses on finding control policy ζ,
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such that uk = ζk(Ik) minimizes the following cost function:

JN = E
[
||xN ||2WN

+

N−1∑
k=0

||xk||2Wk
+ ||uak||2Rk

]
= E

[
||xN ||2WN

+

N−1∑
k=0

||xk||2Wk
+ ||ξkuk||2Rk

] (7)

where Wk and Rk are symmetric matrices such that Wk ≥ 0
and Rk > 0 for all k.

III. MAIN RESULTS

In this section, using dynamic programming, we shall
find the optimal control law and the optimal value of the
cost function given in (7).

A. Finite horizon control:

Let us write the value function, i.e., the cost-to-go
from kth stage as follows:

Vk,N (xk, ξk−1, rk) = min
uk

E
[
||xN ||2WN

+

N−1∑
j=k

||xj ||2Wj
+||ξjuj ||2Rj

]
Now, using Bellman’s principle of optimality, we can write
the value function as follows:

Vk,N (xk, ξk−1, rk) = min
uk

E
[
xTkWkxk + uT

k ξ
T
k Rkξkuk

+Vk+1,N (xk+1, ξk, rk+1)|Ik
] (8)

Lemma 1. For the cost function (7), subjected to system
dynamics (1), the following claims are true.
(a) Suppose at the (k − 1)th time index, packet loss status

in the controller-to-actuator path is ξk−1 = N (i); ∀i ∈
{0, 1, 2, ..., (2m − 1)} and rk = j ∈ D, then the value
function at stage k ∈ [0, N ] can expressed as follows:

Vk,N

(
xk,N (i), j

)
= xTk Ξk,N (i, j)xk (9)

where Ξk,N (i, j) is a symmetric matrix and is generated
by the following Coupled Algebraic Riccati Equations
(CAREs):

Ξk,N (i, j) = Wk +AT (j)Li
(
Xk+1,N (., j)

)
A(j)

−AT (j)
[
Li
(
N (.)BT (j)Xk+1,N (., j)

)]T
×
[
Li
(
N (.)

(
Rk +BT (j)Xk+1,N (., j)B(j)

)
N (.)

)]−1

× Li
(
N (.)BT (j)Xk+1,N (., j)

)
A(j)

(10)

Li(.) is defined in (5) and Xk+1,N (l, j) in (5) is defined
as follows:

Xk+1,N (l, j) =

M∑
t=1

(
pjtΞk+1,N (l, t)

)
(11)

(b) The optimal control law is given by

u∗k = −
[
Li
(
N (.)

(
Rk +BT (j)Xk+1,N (., j)B(j)

)
N (.)

)]−1

×Li
(
N (.)BT (j)Xk+1,N (., j)

)
A(j)xk

(12)

(c) The optimal cost for finite horizon is given by

J∗N =

2m−1∑
l=0

P̂l

{
xT0 Ξ0,N (l, r0)x0

}
Proof: We prove the Lemma using induction.

For the stage k = N , it is trivial to see that
VN,N

(
xN ,N (i), j

)
= E

[
xTNΞN,N (i, j)xN

∣∣∣IN] where
ΞN,N (i, j) = WN , ∀i ∈ {0, 1, ...(2m − 1)} and ∀j ∈ D.
Let us now assume that claim (a) is true for the (k + 1)th

stage. So, with information set Ik+1, we can represent
Vk+1,N (xk+1, ξk, rk+1) as follows:

Vk+1,N

(
xk+1,N (i), j

)
= xTk+1Ξk+1,N (i, j)xk+1;

if ξk = N (i) & rk+1 = j
(13)

Now, with information set Ik:

E
[
Vk+1,N (xk+1, ξk, rk+1)

∣∣∣Ik]
=

2m−1∑
l=0

Pi
l

{(
A(j)xk +B(j)N (l)uk

)T M∑
t=1

(
pjtΞk+1,N (l, t)

)
×
(
A(j)xk +B(j)N (l)uk

)}
=

2m−1∑
l=0

Pi
l

{
xTkA

T (j)Xk+1,N (l, j)A(j)xk

+ uT
kN (l)BT (j)Xk+1,N (l, j)B(j)N (l)uk

+ 2uT
kN (l)BT (j)Xk+1,N (l, j)A(j)xk

}
(14)

Combining (8) and (14):

Vk,N

(
xk,N (i), j

)
= min

uk

{
xTkWkxk + xTkA

T (j)Li
(
Xk+1,N (., j)

)
A(j)xk

+ uT
k L

i
(
N (.)

(
Rk +BT (j)Xk+1,N (., j)B(j)

)
N (.)

)
uk

+ 2uT
k L

i
(
N (.)BT (j)Xk+1,N (., j)

)
A(j)xk

}
(15)

From the above equation, optimal control law can be derived
as follows:

u∗k = −
[
Li
(
N (.)

(
Rk +BT (j)Xk+1,N (., j)B(j)

)
N (.)

)]−1

×Li
(
N (.)BT (j)Xk+1,N (., j)

)
A(j)xk

(16)

Substituting the optimal control law back in equation (15),
we get:

Vk,N

(
xk,N (i), j

)
= xTkWkxk + xTkA

T (j)Li
(
Xk+1,N (., j)

)
A(j)xk

− xTkAT (j)
(
Li
(
N (.)BT (j)Xk+1,N (., j)

))T
×
[
Li
(
N (.)

(
Rk +BT (j)Xk+1,N (., j)B(j)

)
N (.)

)]−1

× Li
(
N (.)BT (j)Xk+1,N (., j)

)
A(j)xk

Hence,

Vk,N

(
xk,N (i), j

)
= xTk Ξk,N (i, j)xk (17)
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where Ξk,N (i, j) is given by CAREs (10).
The optimal value of the cost (7) will be the expected
value of the value function at stage k = 0, i.e.,
E
[
V0,N (x0, ξ−1, r0)

∣∣∣I0]. So,

J∗N = E
[
V0,N (x0, ξ−1, r0)

∣∣∣I0]
=

2m−1∑
l=0

P̂l

{
xT0 Ξ0,N (l, r0)x0

} (18)

�
Remark 2. The finite horizon linear quadratic optimal con-
troller for a linear time invariant (LTI) system can be derived
from Lemma 1 by considering the special case D = {1}. The
optimal controller can be expressed as follows:

u∗k = −
[
Li
(
N (.)

(
Rk +BT Ξk+1,N (.)B

)
N (.)

)]−1

×Li
(
N (.)BT Ξk+1,N (.)

)
Axk

where, A(1) = A, B(1) = B and Ξk,N (i) for 0 ≤ i ≤ 2m−1
is generated by the following CAREs:

Ξk,N (i)

= Wk +ATLi
(

Ξk+1,N (.)
)
A−AT

[
Li
(
N (.)BT Ξk+1,N (.)

)]T
×
[
Li
(
N (.)

(
Rk +BT Ξk+1,N (.)B

)
N (.)

)]−1

× Li
(
N (.)BT Ξk+1,N (.)

)
A

(19)

Remark 3. When ξk takes only two values: 0m×m or
1m×m, then the CAREs (19) coincide with the CAREs
given in [6] with Ξk,N (0) = Sk and Ξk,N (1) = Rk.

Remark 4. For the case, when v̄l = µ̄l, ∀l ∈
{0, 1, ..., (2m − 1)}, then the packet loss model becomes
equivalent to the Bernoulli packet loss model and hence,
CAREs (19) coincide with the CAREs given in Garone et
al. [9].

In the rest of the paper, it is assumed that Wk = W and
Rk = R for all k.

The following Lemma establishes the monotonicity of
Ξk,N (i, j); ∀ ∈ {0, 1, ..., (2m − 1)} and ∀j ∈ D, which will
be used in the following subsection.

Lemma 2. For i ∈ {0, 1, ..., (2m − 1)} and j ∈ D,
Ξk,N (i, j) ≥ Ξk+1,N (i, j).

Proof: We prove the Lemma using induction. We have
ΞN,N (i, j) ≥ 0 = ΞN+1,N (i, j) and let us assume
Ξk+1,N (i, j) ≥ Ξk+2,N (i, j), ∀i ∈ {0, 1, ..., (2m − 1)} and
j ∈ D, hence, from (11): Xk+1,N (i, j) ≥ Xk+2,N (i, j),
∀i ∈ {0, 1, ..., (2m − 1)} and j ∈ D.

Therefore, using (8) and (14)

Vk,N

(
x,N (i), j

)
= xT Ξk,N (i, j)x

= min
u

[
xTWx+ uTLi

(
N (.)RN (.)

)
u

+

2m−1∑
l=0

Pi
l

{(
A(j)x+B(j)N (l)u

)T
Xk+1,N (l, j)

×
(
A(j)x+B(j)N (l)u

)}∣∣∣Ik]
≥ min

u

[
xTWx+ uTLi

(
N (.)RN (.)

)
u

+

2m−1∑
l=0

Pi
l

{(
A(j)x+B(j)N (l)u

)T
Xk+2,N (l, j)

×
(
A(j)x+B(j)N (l)u

)}∣∣∣Ik+1

]
= Vk+1,N

(
x,N (i), j

)
= xT Ξk+1,N (i, j)x

(20)

So, Ξk,N (i, j) ≥ Ξk+1,N (i, j). �

Note 3. As Wk = W , Rk = R, ∀k ∈ [0, N ]
and pij (∀i, j ∈ D) is time invariant, it is easy to
see that Vk,N

(
x,N (i), j

)
= V0,N−k

(
x,N (i), j

)
for all i ∈ {0, 1, ..., (2m − 1)}, j ∈ D, hence,
Ξk,N (i, j) = Ξ0,N−k(i, j). Therefore, from Lemma 2,
Ξ0,N−k(i, j) ≥ Ξ0,N−k−1(i, j). Since, k and N can be
chosen arbitrarily, Ξ0,L(i, j) ≥ Ξ0,L−1(i, j) for L ∈ [0, N ].

B2. Infinite horizon control:

In this section, we obtain the infinite horizon optimal
controller by considering N →∞.

Definition of stochastic stabilizability for classical jump
linear systems is given in [13]. We extend this definition for
jump systems with multiple lossy channels as follows.

Definition 1. System (1) is said to be stochastically
stabilizable for some (v̄l, µ̄l), l ∈ {1, 2, ...,m} if there
exists a gain K(v̄l, µ̄l) such that with control input
uk = −K(v̄l, µ̄l)xk :

∞∑
k=0

E
[
||xk||2

]
<∞ (21)

By the following Lemma, convergence of the cost function
(7) and hence, convergence of the Ξ0,N (i, j) as N → ∞
will be established.

Lemma 3. Suppose system (1) is stochastically stabilizable
for some (v̄l, µ̄l), then the solution to the infinite horizon
problem is well defined.

Proof: Since, system (1) is stochastically stabilizable,
there exists a control input uk = −K(v̄l, µ̄l)xk such that∑∞

k=0 E
[
||xk||2

]
< ∞. The infinite horizon cost incurred
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with this control input is given by:

J∞ = E
[ ∞∑
k=0

||xk||2W + ||ξkuk||2R
]

= E
[ ∞∑
k=0

(
xTkWxk

+ xTkKT (v̄l, µ̄l)L
i
(
N (.)RN (.)

)
K(v̄l, µ̄l)xk

)]
≤ δE

[ ∞∑
k=0

||xk||2
]

<∞

(22)

where

δ = ρmax

{
W +KT (v̄l, µ̄l)L

i
(
N (.)RN (.)

)
K(v̄l, µ̄l)

}
Clearly, we have: J∗∞ ≤ J∞ <∞.
Now, from (18), we can write the infinite horizon cost as
follows:

J∗∞ = lim
N→∞

2m−1∑
l=0

P̂l

[
xT0 Ξ0,N (l, j)x0

]
<∞ (23)

Hence, Ξ0,N (i, j), ∀i ∈ {0, 1, ..., (2m − 1)}, ∀j ∈ D is
bounded as N → ∞. Also, from Note 3, Ξ0,N (i, j) is a
monotonically increasing function as N increases. Therefore,
Ξ0,N (i, j)→ Ξ̄(i, j) as N →∞, where Ξ̄(i, j) is the unique
fixed point solution of the following CAREs.

Ξ̄(i, j) = W +AT (j)Li
(
X̄(., j)

)
A(j)

−AT (j)
[
Li
(
N (.)

(
BT (j)X̄(., j)

)]T
×
[
Li
(
N (.)

(
R+BT (j)X̄(., j)B(j)

)
N (.)

)]−1
× Li

(
N (.)BT (j)X̄(., j)

)
A(j)

(24)

here, X̄(i, j) =
∑M

t=1

{
pjtΞ̄(i, t)

}
�

The following Lemma presents the infinite horizon
version of Lemma 1.

Lemma 4. Suppose system (1) is stochastically stabilizable
for some (v̄l, µ̄l), then:
(a) If ξk−1 = N (i) and rk ∈ D, then the infinite horizon

value function at any stage k ∈ [0,∞) can be expressed
as follows:

Vk,∞

(
xk,N (i), j

)
= xTk Ξ̄(i, j)xk (25)

(b) The infinite horizon optimal control law is given by

ū∗k = −
[
Li
(
N (.)

(
R+BT (j)X̄(., j)B(j)

)
N (.)

)]−1

×Li
(
N (.)BT (j)X̄(., j)

)
A(j)xk

(26)

(c) Optimal infinite horizon cost is given by:

J∗∞ =

2m−1∑
l=0

P̂l

{
xT0 Ξ̄(l, r0)x0

}
(27)

Proof: As N → ∞, Ξk,N (i, j) will no longer be function
of k and Ξk,N (i, j)→ Ξ̄(i, j) for all i ∈ {0, 1, ..., (2m−1)}
and j ∈ D. So, replacing Ξk,N (i, j) by Ξ̄(i, j), the Lemma
can be proved by using the same argument used in Lemma
1. �

Remark 5. From Lemma 4., the infinite horizon optimal
controller for an LTI system can be expressed as follows:

ū∗k = −
[
Li
(
N (.)

(
R+BT Ξ̄(.)B

)
N (.)

)]−1

×Li
(
N (.)BT Ξ̄(.)

)
Axk

(28)

where Ξ̄(i) for 0 ≤ i ≤ 2m− 1 is the fixed-point solution of
the following CAREs:

Ξ̄(i) = W +ATLi
(

Ξ̄(.)
)
A−AT

[
Li
(
N (.)BT Ξ̄(.)

)]T
×
[
Li
(
N (.)

(
R+BT Ξ̄(.)B

)
N (.)

)]−1

Li
(
N (.)BT Ξ̄(.)

)
A

(29)

IV. NUMERICAL EXAMPLE

Let us consider the following MJLS:

xk+1 = A(rk)xk +B(rk)uak (30)

where, rk = {1, 2}, A(1) = 2.1, A(2) = 2.3, B(1) =
B(2) = [1 2], W = 1 and R = I2×2. Let us take the
switching probabilities as follows: p11 = 0.4, p12 = 0.6,
p22 = 0.75 and p21 = 0.35. If the control packet arrival
probabilities are chosen as v̄1 = 0.75, v̄2 = 0.82, µ̄1 = 0.85,
µ̄2 = 0.8, then it can be observed that Ξ0,N (i, j) for
i ∈ {0, 1, 2, 3} and j ∈ D converge, which is shown in Fig. 1.
Therefore, the CAREs (24) admit unique fixed-point solution
and hence, the infinite-horizon optimal cost converges. In
Fig. 2., convergence of Ξ0,N (i, j) is demonstrated for the
probabilities v̄1 = 0.55, v̄2 = 0.65, µ̄1 = 0.7, µ̄2 = 0.73. It
can be observed that as the arrival probabilities are higher
for the first case, Ξ0,N (i, j) converge faster for the first case
(Fig. 1.) compared to the second case (Fig. 2.). If the arrival
probabilities are further reduced to v̄1 = 0.35, v̄2 = 0.45,
µ̄1 = 0.5, µ̄2 = 0.4, Ξ0,N (i, j) diverge, as N → ∞ (Fig.
3.), hence, CAREs (24) do not admit fixed-point solution and
infinite-horizon cost does not converge.

MTNS 2018, July 16-20, 2018
HKUST, Hong Kong

720



Fig. 2. Behavior of Ξ0,N (i, j) as horizon N increases with v̄1 = 0.55;
v̄2 = 0.65; µ̄1 = 0.7; µ̄2 = 0.73

Fig. 1. Behavior of Ξ0,N (i, j) as horizon N increases with v̄1 = 0.75;
v̄2 = 0.82; µ̄1 = 0.85; µ̄2 = 0.8

V. CONCLUSIONS

In this paper, we have investigated the linear quadratic op-
timal control of an MJLS over multiple channels considering
correlated packet losses. The finite horizon and the infinite
horizon controllers are designed considering the TCP-like
case. Convergence of the infinite horizon cost function and
hence, existence of the infinite horizon controller is also
investigated. It is observed that if the control packet arrival
probabilities are more than critical values, then the infinite
horizon CAREs converge to the unique fixed-point solution.
Moreover, as a special case, the finite horizon controller and
the infinite horizon controller for an LTI system are also
derived.

Fig. 3. Behavior of Ξ0,N (i, j) as horizon N increases with v̄1 = 0.35;
v̄2 = 0.45; µ̄1 = 0.5; µ̄2 = 0.4

REFERENCES

[1] J. Baillieul and P. J. Antsaklis, “Control and communication challenges
in networked real-time systems,” Proceedings of the IEEE, vol. 95,
no. 1, pp. 9–28, 2007.

[2] T. Samad, J. S. Bay, and D. Godbole, “Network-centric systems for
military operations in urban terrain: the role of uavs,” Proceedings of
the IEEE, vol. 95, no. 1, pp. 92–107, 2007.

[3] K. C. Lee, S. Lee, and M. H. Lee, “Remote fuzzy logic control
of networked control system via profibus-DP,” Industrial Electronics,
IEEE Transactions on, vol. 50, no. 4, pp. 784–792, 2003.

[4] L. Schenato, B. Sinopoli, M. Franceschetti, K. Poolla, and S. S.
Sastry, “Foundations of control and estimation over lossy networks,”
Proceedings of the IEEE, vol. 95, no. 1, pp. 163–187, 2007.

[5] J. Nilsson et al., “Real-time control systems with delays,” 1998.
[6] Y. Mo, E. Garone, and B. Sinopoli, “LQG control with markovian

packet loss,” in Control Conference (ECC), 2013 European. IEEE,
2013, pp. 2380–2385.

[7] G. Haßlinger and O. Hohlfeld, “The Gilbert-Elliott model for packet
loss in real time services on the internet,” in Measuring, Modelling and
Evaluation of Computer and Communication Systems (MMB), 2008
14th GI/ITG Conference-. VDE, 2008, pp. 1–15.

[8] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, and S. S. Sastry,
“Optimal control with unreliable communication: the tcp case,” in
American Control Conference, 2005. Proceedings of the 2005. IEEE,
2005, pp. 3354–3359.

[9] E. Garone, B. Sinopoli, A. Goldsmith, and A. Casavola, “LQG
control for MIMO systems over multiple erasure channels with perfect
acknowledgment,” Automatic Control, IEEE Transactions on, vol. 57,
no. 2, pp. 450–456, 2012.

[10] A. Chiuso, N. Laurenti, L. Schenato, and A. Zanella, “LQG-like
control of scalar systems over communication channels: The role of
data losses, delays and snr limitations,” Automatica, vol. 50, no. 12,
pp. 3155–3163, 2014.

[11] E. G. Peters, D. Marelli, D. E. Quevedo, and M. Fu, “Controller design
for networked control systems affected by correlated packet losses,”
IFAC-PapersOnLine, vol. 50, no. 1, pp. 2555–2560, 2017.

[12] O. L. V. Costa, M. D. Fragoso, and R. P. Marques, Discrete-time
Markov jump linear systems. Springer Science & Business Media,
2006.

[13] Y.-Y. Cao and J. Lam, “Stochastic stabilizability and H∞ control for
discrete-time jump linear systems with time delay,” Journal of the
Franklin Institute, vol. 336, no. 8, pp. 1263–1281, 1999.

MTNS 2018, July 16-20, 2018
HKUST, Hong Kong

721


