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Abstract— The notion of moment at a pole of a single-input,
single-output, continuous-time, nonlinear, time-invariant system
is studied. It is argued that the existing notion of moment at
pole can be extended to wider classes of systems. The moment
at a pole of a class of systems in feedback form is shown to
be uniquely determined by the steady-state impulse response of
the system under weaker assumptions than those of previous
works. With a class of asymptotically autonomous systems as a
guiding example, it is shown that general invariant manifolds
(which do not necessarily pass through the origin) can be also
used to characterise moments at a pole. Finally, a dual notion
of moment at a pole is introduced and shown to be “natural”
for systems in feedforward form.

I. INTRODUCTION

Model reduction methods have received considerable atten-
tion in recent years, primarily as a result of ever-demanding
requirements for simulation tools in analysis and design. The
aim of model reduction methods is to construct simplified
models of a given system while retaining prescribed features
of the original system [1]. This is instrumental, for example,
to simulate systems with a large number of state variables
or to cope with time and storage constraints. The need of
accurate, inexpensive mathematical models frequently leads
to a fundamental modelling trade-off: the choice between the
simplicity and versatility of linear, time-invariant models [2 –
4] and the complexity and richness of nonlinear models [5 –
8]. While model reduction methods for linear, time-invariant
systems are nowadays a classical topic in control theory [1],
their nonlinear counterpart is far less understood and deserves
further study.

A model reduction method which has been extended
to nonlinear systems over the past decades is known in
the literature as model reduction by moment matching [1].
Starting from the seminal contribution [9], the concept of
moment matching has been re-visited and extended in a
series of works, see, e.g., [10 – 12]. The key observation is
that moment matching can be interpreted as an equivalence
condition on the steady-state response of the original system
and of the reduced order model. Recently, the domain of
definition of moments of a linear, time-invariant system has
been extended to poles of the transfer function [13 , 14], where
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moments are classically not defined [1]. This, in turn, has
led to nonlinear enhancements of the notions of eigenvalue,
of pole and of moment at a pole [15], which have been
shown to be intimately connected to the steady-state impulse
response of the underlying system. The significance of these
results has been subsequently demonstrated in the solution
of the model reduction problem at poles both for linear and
nonlinear systems [16], a problem which in the linear case
is closely related to finding stable projections of a given
transfer matrix [17]. An important consequence of these
works is that the classical model reduction method by modal
approximation [1] can be regarded as moment matching
method in which the moment matching condition is imposed
at poles [16].

The main contributions of the paper are threefold. First, it
is shown that the steady-state impulse response of a nonlinear
system can be characterised in terms of the moment at a pole
of the system under more general circumstances than those
outlined in [16]. Second, it is argued that general invariant
manifolds, which do not necessarily pass through the origin,
can be used to characterise the moment at a pole of a system,
thus extending the notion of moment first proposed in [15].
To support this claim, moments of a class of asymptotically
autonomous systems are studied. Third, an alternative notion
of moment at a pole, “dual” with respect to that of [15],
is introduced and shown to be “natural” for systems in
feedforward form. With these results the authors intend to
suggest that the existing notion of moment at pole can be
extended to wider classes of systems.

The remainder of this work is organised as follows.
Section II provides basic definitions, preliminary results and
the problem formulation. Section III contains the main results
of the paper, where the moments at a pole are studied for
systems in feedback form, for a class of asymptotically
autonomous systems and for systems in feedforward form.
Section IV concludes the paper with a summary of the results
and an outlook for future research directions.

Notation: N denotes the set of non-negative integer numbers.
R and Rn denote the set of real numbers and the set of n-
dimensional vectors with real entries, respectively. R+ and
R+ denote the set of positive real numbers and the set of
non-negative real numbers, respectively. Reλ denotes the
real part of the complex number λ. col(x1, x2) denotes the
(n1 + n2)-dimensional vector obtained by stacking the vectors
x1 ∈ Rn1 and x2 ∈ Rn2 one above the other. ‖x‖ denotes
the Euclidean norm of the vector x ∈ Rn. δ0 denotes the
Dirac δ-distribution. Lfh denotes the Lie derivative of the
mapping h along the vector field f [6, p. 8].
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II. PROBLEM FORMULATION

Consider a continuous-time, single-input, single-output,
nonlinear, time-invariant system described by the equations1

ẋ = f(x) + g(x)u, y = h(x), (1)

in which x(t) ∈ Rn, u(t) ∈ R, y(t) ∈ R and the mappings
f : Rn → Rn, g : Rn → Rn, h : Rn → R are such that
f(0) = 0 and h(0) = 0, respectively. Throughout the paper all
mappings are assumed to be smooth, i.e. infinitely many times
differentiable. We also assume that system (1) is minimal, i.e.
strongly observable and strongly accessible [5, Chapter 2].

Definition 1. [15] Consider system (1). The vector field
f2 : Rm → Rm is said to be a pole of system (1) if there
exist (local) coordinates x = col(x1, x2) ∈ Rn−m × Rm in
which system (1) reads as

ẋ1 = f1(x1, x2), ẋ2 = f2(x2)+g2(x2)u, y = h1(x1), (2)

and a unique mapping π : Rm → Rn−m, locally defined in
a neighbourhood of the origin and such that π(0) = 0, which
solves the partial differential equation

f1(π(x2), x2) =
∂π

∂x2
f2(x2) (3)

System (1) is said to have a pole at zero if the vector field
f2 is identically zero.

Remark 1. Definition 1 establishes that a pole completely
specifies the dynamics of a system along a given subset
of the state space, in analogy with the case of linear
systems [14]. Note that different, non-equivalent notions of
pole of a nonlinear system exist in the literature [19 – 21].
The advantage of the notion of pole given in Definition 1 is
that it extends to systems which do not admit a representation
in terms of transfer function. Moreover, it allows to pose and
solve the model reduction problem at poles both for linear
and nonlinear systems within a unified framework [16]. M

Remark 2. Definition 1 requires system (1) to have an inherent
cascade decomposition and the existence of a (local) invariant
manifold with specific properties. Necessary and sufficient
conditions for system (1) to possess such a structure can be
given using tools from geometric control theory [16]. M

Definition 2. [15] Consider system (1). Suppose (2) holds
with respect to the (local) coordinates x = col(x1, x2) ∈
Rn−m×Rm and let f2 : Rm → Rm be a pole of system (1).
The moment of system (1) at f2 is defined as the function
h1(π(·)), with π the unique solution of (3). The moment of
system (1) at f2 is said to be the moment of system (1) at
zero if the vector field f2 is identically zero.

Remark 3. Definition 2 is motivated by the analysis provided
in [16], where the notion of moment at a pole has been defined
for linear systems and subsequently extended to nonlinear
systems. The reader is referred to [16] for further detail. M

1The choice of focusing on input-affine systems is made to ensure that
the impulse response of the system, and its derivatives, are well-defined (see
[9 , 18] for more detail).

The following result states that the moment of a system at
a pole uniquely determines the steady-state impulse response2

of the output of the system, provided that certain assumptions
hold.
Theorem 1. [16] Consider system (1). Suppose (2) holds
with respect to the (local) coordinates x = col(x1, x2) ∈
Rn−m×Rm and let f2 : Rm → Rm be a pole of system (1).
Assume that the equilibrium at the origin of the system
ẋ1 = f1(x1, 0) is locally exponentially stable, that the system
ẋ2 = f2(x2) is Poisson stable and that the pair (f2, g2(0))
is exciting3. Then the (well-defined) moment of system (1)
at f2 uniquely determines the steady-state impulse response
of the output of system (1).

The goal of the paper is to show that the existing notion
of moment at a pole can be extended to wider classes of
systems. With this goal in mind, we provide evidence for the
following assertions.
(A1) Theorem 1 provides only sufficient conditions for the

moment of a system at a pole to uniquely specify the
steady-state impulse response of the system.

(A2) General invariant manifolds can be used to extend the
notion of moment at a pole.

(A3) A “dual” notion of moment at pole is more suited to
certain classes of nonlinear systems.

III. MAIN RESULTS

This section contains the main results of the paper. To
support the assertions in Section II, we characterise the
moments of three classes of systems: a class of systems in
feedback form, a class of asymptotically autonomous systems
and systems in feedforward form.

A. Moments of a class of systems in feedback form

Consider a system described by the equations

ẋ1 = f1(x1, x2), ẋ2 = µ0u, y = h1(x1), (4)

in which x(t) = col(x1(t), x2(t)) ∈ Rn−1 ×R, u(t) ∈ R,
y(t) ∈ R, f1 : Rn → Rn−1, h1 : Rn−1 → R are such that
f1(0, 0) = 0, h1(0) = 0 and µ0 ∈ R+ is a given constant
such that f1(0, µ0) = 0.

The purpose of this section is to show that Theorem 1
provides only sufficient conditions for the moment of a system
at a pole to uniquely determine the steady-state impulse
response of the system. To this end, we show that it is
possible to characterise the moment of system (4) at zero
in terms of the steady-state impulse response of its output
using the theory of (local) bifurcations [24], even when the
assumptions of Theorem 1 are violated. Note, preliminarily,
that the solution of the system

ẋ1 = f1(x1, x2), ẋ2 = 0,

2The notion of steady-state response is borrowed from [22]. By steady-
state impulse response we mean the steady-state response corresponding to
the input u = δ0.

3The pair (f, x0) is said to be exciting if dimE(x0) = n, in which
E(x) = span {θk(x), k ∈ N}, with θk+1(x) = ∂θk

∂x
f(x) for k ∈ Z+

and θ0 the identity map on Rn. The reader is referred to [23] for further
detail.
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with x(0) = col(x1(0), µ0) coincides with the solution of
system (4), with u = δ0 and x2(0) = 0, since

x1(t) = x1(0) +

∫ t

0

f1(x1(ζ), µ0)dζ, x2(t) = µ0.

The following result is also useful for the development of
our analysis.

Lemma 1. System (4) has a pole at zero if and only if there
exists a unique mapping π : R→ Rn−1, locally defined in a
neighbourhood of the origin and such that π(0) = 0, which
solves the equation f1(π(x2), x2) = 0.

Proof. The claim is a direct consequence of the definition
of pole at zero, since system (4) has an obvious cascade
decomposition.

The following statement characterises the case in which
the equilibrium point at the origin of the system

ẋ1 = f1(x1, µ0) (5)

is hyperbolic, i.e. the case in which the matrix

F1 =
∂f1
∂x1

∣∣∣∣
x=0

(6)

has no eigenvalues on the imaginary axis.

Theorem 2. Consider system (4) and system (5). Assume the
equilibrium at the origin of system (5) is hyperbolic. Then
system (4) has a pole at zero.

Proof. By hypothesis, the origin is an equilibrium point of
system (5) and the matrix F1 is invertible. By the implicit
function theorem this implies that there exists a unique
mapping π : R→ Rn−1, locally defined in a neighbourhood
of the origin and such that π(0) = 0, which solves the
equation f1(π(x2), x2) = 0. By Lemma 1, system (4) has
therefore a pole at zero.

Remark 4. The hyperbolic equilibrium at the origin of
system (5) persists for every µ sufficiently close to µ0. This
implies that the moment of system (4) at zero is well-defined
for every µ sufficiently close to µ0. However, in this case it
is not necessarily possible to relate the moment of system (4)
at zero with the steady-state impulse response of the output
of the system. M

We now focus on the more interesting situation in which
the equilibrium point at the origin of system (5) is not
hyperbolic. We show that, under certain assumptions, the
steady-state impulse response of the output of system (4) can
be characterised in terms of the moment of the system at
zero, despite the fact that the system ẋ1 = f1(x1, 0) is not
locally exponentially stable (as required by Theorem 1). To
this end, note that if the matrix (6) has two purely imaginary
eigenvalues and no other eigenvalues with zero real part, then
by the center manifold theorem [25] there exists a mapping
π : R→ Rn−1, locally defined in a neighbourhood of the
origin, such that π(0) = 0 and f1(π(x2), x2) = 0. Moreover,
the third order Taylor series approximation of the restriction

to the center manifold of system (4) is governed by equations
of the form [24, p. 151]

ξ̇1 = ψ1(ξ)ξ1 − ψ2(ξ)ξ2, (7a)

ξ̇2 = ψ2(ξ)ξ1 + ψ1(ξ)ξ2, (7b)

in which
ψ1(ξ) = dµ+ a

(
ξ21 + ξ22

)
and

ψ2(ξ) = ω + cµ+ b
(
ξ21 + ξ22

)
,

with ξ = col(ξ1, ξ2) ∈ R2 and a, b, c, d ∈ R. Note also that
in this case the eigenvalues λ(µ) and λ̄(µ) of the matrix

F1(µ) =
∂f1
∂x1

∣∣∣∣
x1=π(µ)

(8)

which are imaginary at µ = µ0 vary smoothly with µ [24,
p. 151]. We are now ready to establish the following result.
Theorem 3. Consider system (4), system (5) and system (7).
Assume a ∈ R− and d ∈ R−. Moreover, assume that the
condition

dReλ

dµ

∣∣∣∣
µ=µ0

6= 0, (9)

holds, in which λ is an eigenvalue of the matrix (8) which
is imaginary at µ = µ0. Then system (4) has a pole at zero.
Moreover, the (well-defined) moment of system (4) at zero
uniquely determines the steady-state impulse response of the
output of system (4).

Proof. Under the stated assumptions the Hopf bifurcation
theorem [24, p.151] implies the existence of a unique
center manifold for system (5) passing through the origin.
This, in turn, implies that there exists a unique mapping
π : R→ Rn−1, locally defined in a neighbourhood of the
origin and such that π(0) = 0 and f1(π(x2), x2) = 0. By
Lemma 1, this implies that system (4) has a pole at zero.
Moreover, the moment of system (4) at zero is well-defined
since π is unique. The Hopf bifurcation theorem also implies
that the origin is unstable and surrounded by an attractive
periodic orbit γ [24, p.151], since by hypothesis a ∈ R−,
d ∈ R− and condition (9) holds. Hence, every non-zero initial
condition in a neighbourhood of the origin generates a solution
of system (5) which converges to the periodic orbit γ as
t→∞. Thus the steady-state impulse response of system (4)
is well-defined and the output of system (4) can be written
as

y(t) = h1(π(x2(t))) + ε(t),

in which ε is an exponentially decaying function. Thus, the
steady-state impulse response of the output of system (4) is

yss(t) = h1(π(x2(t))).

By Definition 2, this implies that the moment of system (4) at
zero uniquely specifies the steady-state impulse response of
the output of system (4) and, hence, the claim is proved.

Theorem 3 states that the moment of system (4) at zero
uniquely determines the steady-state impulse response of the
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output of system (4) even if the assumptions of Theorem 2
are violated. This confirms that the assumptions of Theorem 2
are only sufficient for this to happen.

B. Moments of a class of asymptotically autonomous systems

We now argue that moments at a pole can be defined
exploiting general invariant manifolds. We illustrate this idea
by studying a class of asymptotically autonomous systems
and by removing the requirement in Definition 2 that the
invariant manifold which defines the moment of the system
has to pass through the origin.

Theorem 4. Consider system (2). Let x1(t) ∈ Rn−1,
x2(t) ∈ R+, u(t) ∈ R, y(t) ∈ R. Assume there exists a
vector field ϕ1 : Rn−1 → Rn−1 such that the following hold.

(i) The integral curves of the vector field f1 are bounded
and f1(x1, x2)→ ϕ1(x1), as ‖x2‖ → ∞, uniformly on
compact subsets of Rn−1.

(ii) The vector field f2 is such that f ′2(0) is not an eigenvalue
of the matrix

F1 =
∂f1
∂x1

∣∣∣∣
x=0

.

(iii) The system
ẋ1 = ϕ1(x1) (10)

has an unstable equilibrium at the origin and a unique
globally attractive periodic orbit.

Then the vector field f2 is a pole of system (2) and the (well-
defined) moment of system (2) at f2 uniquely determines the
steady-state impulse response of the output of system (2).

Proof. We first show that f2 is a pole of system (2). Note
that the system admits an obvious cascade decomposition
and, thus, we only need to show that there exists a unique
mapping π : R→ Rn−1 which solves the partial differential
equation (3). However, this is implied by assumption (ii) and
hence f2 is a pole of system (2). Note also that the moment
of system (2) is well-defined, since the mapping π is unique.

We now show that the moment of system (2) at f2 uniquely
determines the steady-state impulse response of the output of
system (2). By assumption (i), system (2) is asymptotically
autonomous with limit equation (10) [26]. Moreover, the
integral curves of the vector field f1 are bounded [27], and
every solution of system (2) approaches its ω-limit set, which
is non-empty, compact and connected. Thus, by assumption
(iii), the ω-limit set of system (2) coincides with the unique
globally attractive periodic orbit of system (10), since every
point of the ω-limit set of system (2) lies on a solution that
is contained in the ω-limit set of system (10) [27]. This
implies that the steady-state impulse response of system (2)
is well-defined and the output of system (2) can be written
as

y(t) = h1(π(x2(t))) + ε(t),

in which ε is an exponentially decaying function. Thus, the
steady-state impulse response of the output of system (2) is

yss(t) = h1(π(x2(t))).

By Definition 2 and assumption (ii), this implies that the
moment of system (4) at zero uniquely specifies the steady-
state impulse response of the output of system (4) and, hence,
the claim is proved.

We now illustrate Theorem 4 with an academic example.

Example 1. Consider the system

ẋ11 =

(
1−

√
x211 + x212

)
x11 −

(
Ω + ψ(x2)

)
x12, (11a)

ẋ12 =

(
1−

√
x211 + x212

)
x12 +

(
Ω + ψ(x2)

)
x11, (11b)

ẋ2 = αx2 + u, (11c)

y =
√
x211 + x212 + arctan

(
x12
x11

)
, (11d)

with x(t) = col(x11(t), x12(t), x2(t)) ∈ R2 ×R+, u(t) ∈ R,
y(t) ∈ R, Ω ∈ R+, α ∈ R+ \ {1,Ω}, x211(0) + x212(0) 6= 0,
and ψ : R+ → R a strictly decreasing function such that

lim
x2→∞

ψ(x2) = 0.

The purpose of this example is to show that the vector field
f2 : R → R, defined as f2(x2) = αx2 for every x2 ∈ R, is
a pole of system (11) and that the (well-defined) moment
of system (11) at f2 uniquely determines the steady-state
impulse response of the output of system (11). To this end,
we exploit Theorem 4 to obtain the desired conclusion.

We observe that the dynamics of system (11) is best
understood in the cylindrical coordinates x11 = ρ cosϑ and
x12 = ρ sinϑ. Differentiating with respect to time one obtains[

ẋ11
ẋ12

]
=

[
cosϑ −ρ sinϑ
sinϑ ρ cosϑ

] [
ρ̇

ϑ̇

]
.

Inverting the above relation, system (11) can be rewritten as

ρ̇ = ρ(1− ρ), (12a)

ϑ̇ = Ω + ψ(x2), (12b)
ẋ2 = αx2 + u, (12c)
y = ρ+ ϑ. (12d)

We are now in the position to establish the following result.

Proposition 1. The vector field f2 is a pole of system (11)
and the (well-defined) moment of system (12) at f2 uniquely
determines the steady-state impulse response of the output
of system (12).

Proof. To prove the claim we show that assumptions (i)-(iii)
of Theorem 4 hold. To this end, define the vector fields

ϕ1(ρ, ϑ) =

[
ρ(1− ρ)

Ω

]
, f1(ρ, ϑ, x3) =

[
ρ(1− ρ)

Ω + ψ(x2)

]
,

for every (ρ, ϑ, x2) ∈ R+ ×R ×R+.
(i) The integral curves of the vector field f1 are clearly

bounded. Thus, to prove that (i) holds we only need to
show that f1(ρ, ϑ, x2)→ ϕ1(ρ, ϑ), as x2 →∞, uniformly
on compact subsets of R+ ×R. In other words, we need to
show that there exists a constant δ ∈ R+ such that for every
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Fig. 1. The projection on the (x11, x12) plane of the phase portrait of
system (11) and the circumference of unitary radius (solid), with Ω = 1,
α = 2 and ψ : R+ → R defined as ψ(x2) = x−2

2 for every x2 ∈ R.

x2 > δ the inequality ‖f1(ρ, ϑ, x2)− ϕ1(ρ, ϑ)‖ < ε holds for
every (ρ, ϑ) ∈ K, where ε ∈ R+ is a given constant and K
is a given compact subset of R+ ×R. To this end, recall that
ψ is, by assumption, a strictly decreasing function such that

lim
x2→∞

ψ(x2) = 0.

This implies that there exists x̄2 ∈ R+ such that for every
x2 > x̄2 the inequality |ψ(x2)| < ε holds. Thus, selecting
δ = x̄2 we see that ‖f1(ρ, ϑ, x2)− ϕ1(ρ, ϑ)‖ = |ψ(x2)| < ε,
as desired.

(ii) This assumption is verified by direct computation. The
hypothesis α 6∈ {1,Ω} implies α2− (Ω + 1)α+ Ω 6= 0. This,
in turn, can be equivalently expressed as

det(αI − F1) = det

[
α− 1 −Ω
−1 α− Ω

]
6= 0.

This implies that α is not an eigenvalue of F1.
(iii) Consider the planar system

ρ̇ = ρ(1− ρ), ϑ̇ = Ω, (13)

and note that there exist only two invariant sets: the
equilibrium point at the origin and the circumference of
unitary radius. Note also that ρ̇ = ρ(1− ρ) implies that if
ρ(0) > 1 then ρ̇(t) < 0, while if ρ(0) < 1 then ρ̇(t) > 0. As
a result, the origin is unstable and the solution lying on
the circumference of unitary radius is the unique globally
attractive periodic solution of the system. N

Fig. 1 displays the projection on the (x11, x12) plane of the
phase portrait of system (11) and the circumference of unitary
radius (solid), with Ω = 1, α = 2 and ψ : R+ → R, defined
as ψ(x2) = x−22 for every x2 ∈ R. Note that the origin is
unstable and that the solution lying on the circumference
of unitary radius is a globally attractive periodic orbit of
system (13). N

C. Moments of systems in feedforward form

We now consider an alternative notion of moment at a
pole. Motivated by the discussions in [28] and [29], we
introduce a notion of moment which can be regarded as
“dual” to that of Definition 2 and which is more suited to
systems admitting a cascade decomposition which consists
of a locally exponentially stable system driving a stable
system. For simplicity, our analysis is restricted to systems
in feedforward form, though similar considerations can be
applied to a wider class of systems.

Consider a system described by the equations

ẋ1 = f1(x2), ẋ2 = f2(x2) + g2(x2)u, y = h1(x1), (14)

in which x(t) = col(x1(t), x2(t)) ∈ Rn−m ×Rm, u(t) ∈ R,
y(t) ∈ R and the mappings f1 : Rm → Rn−m, f2 :
Rm → Rm, g2 : Rm → Rm, h1 : Rn−m → R are such that
f1(0) = 0, f2(0) = 0 and h1(0) = 0. Note that the vector
field f2 is a pole of system (14) as long as the linear
approximation of f2 has no eigenvalues on the imaginary
axis, since this implies the existence of a unique solution
of the partial differential equation (3). In this case, however,
the local asymptotic stability requirement of Theorem 1 is
violated. Thus it is not possible to characterise the steady-state
impulse response of system (14) in terms of the moment of
system (14) at the pole f2. For this reason, we introduce the
following “dual” notion of moment at a pole for system (14).

Definition 3. Consider system (14) and let f2 : Rm → Rm

be a pole of system (14). The moment of system (14) at f2
is defined as h1(Lg2π(0)), with π the unique solution of the
partial differential equation

f1(x2) =
∂π

∂x2
f2(x2). (15)

The moment of system (14) at f2 is said to be the moment of
system (14) at zero if the vector field f2 is identically zero.

The following result provides conditions under which the
moment of system (14) at f2, in the sense of Definition 3,
uniquely determines the steady-state impulse response of the
output of system (14).

Theorem 5. Consider system (14). Assume that the equi-
librium at the origin of system ẋ2 = f2(x2) is locally
exponentially stable and globally asymptotically stable. Then
the vector field f2 is a pole of system (14) and the (well-
defined) moment of system (14) at f2, in the sense of
Definition 3, uniquely determines the steady-state impulse
response of the output of system (14).

Proof. Under the stated assumptions, there exists a unique
mapping π : Rm → Rn−m, locally defined in a neighbour-
hood of the origin and such that π(0) = 0, which solves the
partial differential equation (15). Since system (14) has an
obvious cascade decomposition, this implies that the vector
field f2 is a pole of system (14) and that the moment of
system (14) at f2, in the sense of Definition 3, is well-defined.
Set

z = x1 − π(x2)
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and note that z and x2 qualify as (local) coordinates for
system (14). In such coordinates, system (14) is described
by the equations

ż = Lg2π(x2)u,

ẋ2 = f2(x2) + g2(x2)u,

y = h1(z + π(x2)).

Setting u = δ0 and recalling that, by assumption, the equi-
librium at the origin of the system ẋ2 = f2(x2) is globally
asymptotically stable, shows that the steady-state impulse
response of system (14) is well-defined and the output of
system (14) can be written as

y(t) = h1(Lg2π(0) + ε(t)),

in which ε is an exponentially decaying function. Thus, the
steady-state impulse response of the output of system (14) is

yss(t) = h1(Lg2π(0)).

By Definition 3, this implies that the moment of system (14)
at zero uniquely specifies the steady-state impulse response of
the output of system (14) and, hence, the claim is proved.

Remark 5. Theorem 5 establishes that steady-state impulse
response of a system in feedforward form can be characterised
in terms of the moment of the system at a pole in the
sense of Definition 3. Note that under the assumptions of
Theorem 5 this is not the case if the notion of moment
at a pole of Definition 2 is used. This demonstrates that
different, possibly non-equivalent, notions of moment at a
pole should be considered depending on the class of systems
under consideration. M

Remark 6. Definition 3 and Theorem 5 can be extended to
systems of the form (2), provided all the eigenvalues of the
linear approximation of the system ẋ1 = f1(x1, x2) lie on
the imaginary axis. M

IV. CONCLUSION

The notion of moment at a pole of a nonlinear system
introduced in [16] has been studied. Alternative notions of
moment at a pole have been explored and moments at a pole of
systems in feedback form, of a special class of asymptotically
autonomous systems and of systems in feedforward form have
been characterised in terms of steady-state impulse responses.
The results of this paper indicate that different notions of
moment at a pole should be used when considering different
classes of systems. An interesting direction for future research
is the extension of these notions to multi-input, multi-output
systems.
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