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Abstract— We show the application of a recently presented
structure-preserving semi-discretization method to the heat
equation on an arbitrary dimensional spatial domain. It retains
the separation of the geometric (Stokes-)Dirac structure with
its global balance equation, from the dynamics and constitutive
equations. On the 1D example, we exploit the banded structure
of the resulting state space matrices in order to analyze the
approximation quality of the eigenvalues for two representa-
tive parametrizations. We show that the spatial discretization
scheme preserves also a given flat output as a basis for
feedforward motion planning.

I. INTRODUCTION

The port-Hamiltonian (PH) framework offers a structured
and unifying approach, among others for the modeling of
conservation laws, including heat transfer and thermody-
namic systems [1]. Focusing the attention to conservation
laws, a salient feature of the PH approach is that very differ-
ent physical systems share a common geometric structure [2].
This so-called Stokes-Dirac structure involves a canonical
differential operator (up to possibly different signs which dis-
tinguish the hyperbolic from the parabolic case). It is directly
related with a balance equation that holds independently of
the actual dynamics and constitutive equations. Substituting
the latter gives e. g. the global balance of flows of energy or
entropy. The heat equation, which is considered in this paper,
can be represented in terms of two first order differential
equations in space for a) the conservation of internal energy
and b) the thermodynamic driving force. Fourier’s law and
a calorimetric relation close the system representation.

A first approach to a structure-preserving spatial dis-
cretization that separates the linear (Stokes-)Dirac structure
from the constitutive and dynamics equations was presented
in [3] and applied, among others, successfully to diffusive
processes [4]. A main feature of this mixed finite element
like approach is that the differential relations between the
dual system variables (so-called flows and efforts) are exactly
satisfied in the approximation bases. In the same spirit,
a geometric pseudo-spectral method was presented in [5].
The mixed discretization of the structure equations in both
approaches leads to a degenerate duality product between the
discrete flow and effort degrees of freedom. The degeneracy
is resolved by defining reduced effort vectors such that the
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overall discrete balance equation can be expressed via non-
degenerate pairings of flows and reduced efforts. Drawbacks
of the approach in [3] are that the extension to higher spatial
dimensions is not obvious and that the representation of
the system equations in strong form restricts the degrees of
freedom in the power-preserving effort maps.

In [6], we presented a new approach for the spatial
discretization of PH systems of conservation laws, which
is based on the weak form of the Stokes-Dirac structure. By
parametrized linear maps of the flow degrees of freedom (in
contrast to the efforts as described above), the method is
applicable to arbitrary spatial dimension. While preserving
the geometric structure (a finite-dimensional Dirac structure
approximates the infinite-dimensional Stokes-Dirac struc-
ture), different parametrizations of the resulting numerical
models are possible, adapted to the nature of the considered
problem: A parameter choice in the sense of upwinding
is favorable for hyperbolic systems [6], while parabolic
systems like the heat equation in the present paper are better
approximated using a parametrization which corresponds to
a centered approximation of the constitutive equations.

In this paper, we summarize the application of this method
to the nD heat equation. We present the resulting matrices
for the 1D case and an approximation based on Whitney
forms [7]. The tridiagonal structure of the discretized system
matrices for two parametrizations allows for an explicit
computation of the discretized eigenvalues. The “centered”
approximation with α = 1

2 turns out to be second order
accurate, while the “one-sided” approximation with α = 0
is only first order accurate1. In both cases, the structure of
the discretized models allows for a flat parametrization of
the control input in terms of a given desired output and its
time derivatives. This is a property, which is preserved from
the infinite-dimensional model, see [9] for the flatness-based
motion planning of the 1D heat equation.

The remainder of the paper is structured as follows.
In Section II, we introduce the representation of the heat
equation in terms of a Stokes-Dirac structure, constitutive
and dynamics equations. In Section III, we show step by
step the application of the structure-preserving discretization
according to [6] to the nD heat equation. Section IV is
devoted to the concrete representation of the resulting system
matrices in the 1D case. In Section V, the two considered
parametrizations are analyzed in terms of their eigenvalue
approximation and the preservation of the given flat output.
Simulation results illustrate the theoretical findings. Section

1For this case, the model and the calculations coincide with the ones in
[8] for the corresponding parameter choice in the approach [3].
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VI concludes the paper with a summary and comments on
ongoing work.

II. STRUCTURED REPRESENTATION OF THE
HEAT EQUATION

A. Heat equation in arbitrary dimension

We consider the following structured model of the heat
equation on an n-dimensional open domain Ω, n ∈ {1, 2, 3}.
All quantities are differential forms of corresponding degree,
see [10] for an introduction. Λk(Ω) denotes the space of
smooth differential k-forms on Ω. The symbol d represents
the exterior derivative, which maps a k-form to a (k+1)-
form and allows for a generalized treatment of the different
differential operators from vector calculus. The Hodge star ∗
maps k-forms to (n−k)-forms, which are associated to dual
geometric objects2. Heat conduction, see [1], Sections 4.1.1
and 4.2.2, can be described by the conservation law

∂u

∂t
= −dJQ (1)

for the internal energy density u ∈ Λn(Ω) with the heat flux
JQ ∈ Λn−1(Ω). The latter can be described phenomenolog-
ically by Fourier’s law

JQ = − ∗ (λ(T )F ) (2)

with λ(T ) ∈ Λ0 the heat conductivity and F ∈ Λ1(Ω) the
thermodynamic driving force

F = dT, (3)

which corresponds to the temperature gradient. The differen-
tial relation between internal energy density and temperature
shall be expressed by

δu = ∗cv(T )δT (4)

with cv(T ) ∈ Λ0(Ω) the isochoric heat capacity.

B. Structure equations, Stokes-Dirac structure

Defining the flow and effort variables

fp = −∂u
∂t
, fq = F, ep = T, eq = (−1)n−1JQ, (5)

we observe the purely linear relation[
fp

fq

]
=

[
0 (−1)n−1d
d 0

] [
ep

eq

]
(6)

between them, independent of any (material) parameter. The
factor (−1)n−1 is in analogy to the hyperbolic case and
guarantees the formal skew symmetry of the differential
operator for arbitrary n [2]. Flow and effort variables can
be paired via a duality product between differential forms of
appropriate degree on Ω

〈α|β〉Ω :=

∫
Ω

α ∧ β, α ∈ Λk(Ω), β ∈ Λn−k(Ω), (7)

2The Hodge star induces an inner product on the space of differential
forms on a manifold Ω. Or vice versa, a given inner product space induces
the corresponding Hodge star, which is clearly a metric-dependent operation.

with ∧ : Λk(Ω) ∧ Λl(Ω) → Λk+l(Ω) the antisymmetric
wedge product. By the identities λ ∧ µ = (−1)klµ ∧ λ and
d(λ ∧ µ) = dλ ∧ µ + (−1)kλ ∧ dµ for any λ ∈ Λk(Ω),
µ ∈ Λl(Ω) and Stokes’ theorem for differential forms∫

Ω
dω =

∫
∂Ω

trω for any ω ∈ Λn−1(Ω), the following
identity can be verified:

〈ep|fp〉Ω + 〈eq|fq〉Ω + (−1)n〈tr eq|tr ep〉∂Ω = 0. (8)

The trace operator tr defines the restriction of functions
defined on an open set Ω to its boundary ∂Ω. The trace
theorems, see e. g. [11], Section 9.8, and for differential
forms [12], Section 4, clarify the functional spaces of these
restrictions to the boundary. In the following, we consider
fp ∈ L2Λn(Ω), fq ∈ L2Λ1(Ω) and ep ∈ H1Λ0(Ω), eq ∈
H1Λn−1(Ω), i. e. the flow differential forms with coefficient
functions from the Lebesgue space L2 and the effort differ-
ential forms from the Sobolev space H1. For compactness
of notation, we will omit the trace symbol in the sequel, i. e.
〈eq|ep〉∂Ω := 〈tr eq|tr ep〉∂Ω.

Defining as boundary effort and flow

e∂=(−1)ntr eq∈L2Λn−1(∂Ω), f∂=tr ep∈L2Λ0(∂Ω), (9)

the balance equation (8) reads

〈fp|ep〉Ω + 〈fq|eq〉Ω + 〈f∂ |e∂〉∂Ω = 0. (10)

The subspace of F ×E with F = L2Λn(Ω)×L2Λ1(Ω)×
L2Λ0(∂Ω) and E = H1Λ0(Ω)×H1Λn−1(Ω)×L2Λn−1(∂Ω)
of flows and efforts that satisfy (6) and (9) contains exactly
those flows and efforts which satisfy balance equation (10).
This subspace is called a Stokes-Dirac structure, see [2].

Remark 1: The Stokes-Dirac structure is the underlying
geometric structure for the port-Hamiltonian formulation of
hyperbolic systems of two conservation laws [2]. For those
systems, (10) is a power balance, which represents energy
conservation. For the heat equation as an example for a
parabolic system, this interpretation does not hold. However,
by the slightly different choice of variables ep = δS

δu = 1
T

and fq = −F ′ with F ′ the driving force in terms of 1
T , (10)

becomes a balance equation for the entropy S =
∫

Ω
s with a

non-negative entropy generation term, see [1], Section 4.2.2.
Remark 2: The boundary term in (10) can be split in two,

if ∂Ω is decomposed into regions Γ, where e∂ = (−1)ntr eq

is imposed as a boundary input and Γ̂, where ê∂ = tr ep plays
this role (the boundary variables have different causality):

(−1)n〈tr eq|tr ep〉∂Ω = 〈f∂ |e∂〉Γ + 〈f̂∂ |ê∂〉Γ̂. (11)
C. Constitutive equations and dynamics

With p = u as conserved quantity and

eq = (−1)nλ(ep) ∗ fq, dep =
1

cv(ep)
d(∗p), (12)

the constitutive equations (2) and (4) in terms of the variables
in (5), we obtain the differential equation

∂ep

∂t
=

λ(ep)

cv(ep)
∗ d ∗ d ep, (13)

which is the familiar representation of the heat equation in
terms of the temperature ep = T with ∗d ∗ d = div grad the
Laplace-Beltrami operator, see [13], Section 3.7.

MTNS 2018, July 16-20, 2018
HKUST, Hong Kong

601



III. MIXED GALERKIN
STRUCTURE-PRESERVING APPROXIMATION

A. Discretization of the structure

We summarize the approach presented in [6] to dis-
cretize the structure equations (6), (9) such that the finite-
dimensional subspace of discrete flows and efforts represents
a Dirac structure. The elements of the Dirac structure are
exactly the flow and effort vectors that satisfy the finite-
dimensional counterpart of the balance equation (10).

1. The structure equations (6) in weak form are

〈vp|fp〉Ω = (−1)n−1〈vp|deq〉Ω (14)
〈vq|fq〉Ω = 〈vq|dep〉Ω

with vp ∈ H1Λ0(Ω) and vq ∈ H1Λn−1(Ω) arbitrary weakly
differentiable test forms. Integration by parts yields

〈vp|fp〉Ω = (−1)n〈dvp|eq〉Ω − (−1)n〈 vp| eq〉∂Ω (15)
〈vq|fq〉Ω = (−1)n〈dvq|ep〉Ω − (−1)n〈 vq| ep〉∂Ω.

2. For the mixed Galerkin approximation of the structure
equations (15), we choose flow, effort and test differential
forms from the finite-dimensional subspaces

fph ∈ span{ψp1 , . . . , ψ
p
Np
} ⊂ L2Λn(Ω),

fqh ∈ span{ψq1, . . . , ψ
q
Nq
} ⊂ L2Λ1(Ω)

(16)

and
eph, v

p
h ∈ span{ϕp1, . . . , ϕ

p
Mp
} ⊂ H1Λ0(Ω),

eqh, v
q
h ∈ span{ϕq1, . . . , ϕ

q
Mq
} ⊂ H1Λn−1(Ω).

(17)

We summarize the basis forms in the vectors ψp ∈
L2Λn(Ω;RNp), ψq ∈ L2Λ1(Ω;RNq ), ϕp ∈ H1Λ0(Ω;RMp)
and ϕq ∈ H1Λn−1(Ω;RMq ). In order to have the structure
equations (6) exactly satisfied in the approximation spaces,
we require the compatibility conditions (in the weak sense)

span{ψp1 , . . . , ψ
p
Np
} = span{dϕq1, . . . ,dϕ

q
Mq
},

span{ψq1, . . . , ψ
q
Nq
} = span{dϕp1, . . . ,dϕ

p
Mp
}.

(18)

Such approximation spaces, whose sequences form subcom-
plexes of the de Rham complex, can be constructed in a
variety of ways, see for finite elements [14]. The simplest
case, which we shall consider in this paper, is the complex
of the famous Whitney forms [7].

Substitute fph = 〈fp|ψp〉, fqh = 〈fq|ψq〉, eph = 〈ep|ϕp〉,
eqh = 〈eq|ϕq〉, vph = 〈vp|ϕp〉 and vqh = 〈vq|ϕq〉 in (15) with
fp ∈ RNp , fq ∈ RNq , ep,vp ∈ RMp and eq,vq ∈ RMq the
vectors of degrees of freedom and 〈·|·〉 the standard scalar
product. The equations must hold for all vp ∈ RMp and
vq ∈ RMq , which yields two matrix equations of the form

Mpf
p + (Kp + Lp)e

q = 0,

Mqf
q + (Kq + Lq)e

p = 0.
(19)

Assuming factorizations of the matrices Kp + Lp =
−(−1)n−1Mpdp and Kq + Lq = −Mqdq , the discrete
counterpart of the structure equation (6) becomes[

fp

fq

]
=

[
0 (−1)n−1dp
dq 0

] [
ep

eq

]
. (20)

In the considered case of Whitney forms, dp ∈ RNp×Mq

and dq ∈ RNq×Mp are the co-incidence matrices that relate
the oriented n-simplices of the triangular discretization mesh
with the n−1-simplices and the directed edges with the nodes.

3. The effort degrees of freedom that correspond to im-
posed boundary conditions, i. e. system inputs, are isolated
from the vectors ep and eq by

eb = Tqe
q, êb = T̂pe

p, (21)

with Tq and T̂p the input trace matrices.
4. By the properties of the matrices in (19) – details are

omitted here and the reader is referred to [6] – the matrices
Lq and Lp can be decomposed in order to define conjugated
output maps

f b0 = Sp,0e
p, f̂ b0 = Ŝq,0e

q, (22)

such that finally a finite-dimensional version of the balance
equation (10) can be established:

〈ep|Mpf
p〉+ 〈eq|Mqf

q〉+ 〈eb|f b0〉+ 〈êb|f̂ b0〉 = 0. (23)

5. The matrices Mp ∈ RMp×Np and Mq ∈ RMq×Nq

are non-square and/or rank-deficient. The discrete effort and
flow degrees of freedom hence do not qualify to define
a finite-dimensional Dirac structure, which approximates
the original Stokes-Dirac structure. The reason is that the
discrete efforts and flows that satisfy (20)-(22), define only
as subset of the discrete (power) variables, for which the
balance equation (23) is true3.

A remedy is to determine mappings of the discrete flows
and efforts with dim(f̃p)=dim(ẽp) and dim(f̃q)=dim(ẽq)

f̃p=Pfpf
p, f̃q=Pfqf

q, ẽp=Pepe
p, ẽq=Peqe

q, (24)

as well as possibly modified conjugated output maps

f b = Spe
p, f̂ b = Ŝqe

q, (25)

such that they satisfy a balance equation

〈ẽp|f̃p〉+ 〈ẽq|f̃q〉+ 〈eb|f b〉+ 〈êb|f̂ b〉 = 0 (26)

with non-degenerate duality products. The matrix condition,
which results from substitution of (21), (24)-(25), and sub-
sequently (20) in (26), is

(−1)n−1dTpP
T
fpPep+PTeqPfqdq+TT

q Sp+ŜTq T̂p = 0. (27)

Under the condition that dim(ẽp) + dim(ẽq) + dim(eb) +
dim(êb) = Mp +Mq and

rank(

[
Pep
T̂p

]
) = Mp, rank(

[
Peq
Tq

]
) = Mq, (28)

3The subset of flows and efforts, which satisfy (20)-(22), is contained in
its annihilator with respect to a symmetrized version of the duality product
on the left hand side of (23). The reverse is not true. A Dirac structure is,
however, defined as the subset of flows and efforts which coincides with its
annihilator with respect to the mentioned symmetrized duality pairing.
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Fig. 1. Illustration of the 1D heat conductor with imposed boundary
conditions T (1) = u and JQ(0) = 0 and the flat output T (0) = y.

the subspace of new discrete flow and effort variables is a
Dirac structure, which admits the so-called unconstrained
in-/output representation[

−f̃p
−f̃q

]
=

[
0 Jp
Jq 0

] [
ẽp

ẽq

]
+

[
0 Bp

Bq 0

] [
êb

eb

]
,[

f̂ b

f b

]
=

[
0 BT

q

BT
p 0

] [
ẽp

ẽq

]
+

[
0 Dq

Dp 0

] [
êb

eb

]
,

(29)

with[
−Jp −Bp

BT
q Dq

]
=

[
(−1)n−1Pfpdp

Ŝq

] [
Peq
Tq

]−1

,[
−Jq −Bq

BT
p Dp

]
=

[
Pfqdq
Sp

] [
Pep
T̂p

]−1 (30)

and Jp = −JTq , Dq = −DT
p . For details see [6].

B. Constitutive equations and finite-dimensional dynamics

A consistent discretization of the constitutive equations
(see the next section for the 1D heat equation and [6] for the
2D wave equation) leads to the discretized versions

ẽq = −Qq f̃q, ẽp = Qpp̃ (31)

of the two equations (12), where Qq and Qp are weighted
discrete Hodge matrices. Together with the dynamics equa-
tion ˙̃p = −fp, with p̃ the vector of discrete state variables,
we obtain the finite-dimensional approximation of the heat
equation

˙̃p = −JTq QqJqQpp̃ + JpQqBqê
b + Bpe

b, (32)

or in terms of the discrete temperature variable

˙̃ep = −QpJ
T
q QqJqẽ

p + QpJpQqBqê
b + QpBpe

b. (33)

IV. STRUCTURE-PRESERVING DISCRETIZATION
OF THE 1D HEAT EQUATION

A. Interconnection structure

The structured discretization of the heat equation on the
interval Ω = (0, 1) using Whitney approximation forms4,
yields the numerical differentiation matrices

dp = dq =

−1 1
. . .

. . .
−1 1

 ∈ RN×(N+1), (34)

4Piecewise constant 1-forms (edges), piecewise linear 0-forms (nodes).

which describe the co-incidence relations between the N
directed edges and N+1 nodes on the discretization grid. The
flow degrees of freedom fp and fq have the interpretation of
the rate of change of internal energy and the temperature
difference on the N edges of the grid, while ep and eq are
temperatures and heat fluxes, localized in the N+1 nodes.

Designating the efforts ep(1) and eq(0) as boundary inputs
translates to the definition of 1× (N+1) input trace matrices

T̂p =
[
0 · · · 0 1

]
, Tq =

[
1 0 · · · 0

]
. (35)

With the mappings

Pep =
[
IN 0N×1

]
, Peq =

[
0N×1 IN

]
, (36)

the remaining nodal efforts are collected in the vectors
ẽp, ẽq ∈ RN , and the matrices[

Peq
Tq

]T
=

[
Peq
Tq

]−1

,

[
Pep
T̂p

]T
=

[
Pep
T̂p

]−1

(37)

become permutation matrices, which avoids inversion when
computing the matrices (30) of the input-output representa-
tion of the finite-dimensional Dirac structure. The flow maps

Pfp = PTfq =


1−α
α 1−α

. . .
. . .
α 1−α

 (38)

and the definition of conjugated discrete outputs

Ŝq =
[
0 · · · 0 −α α−1

]
,

Sp =
[
1−α α 0 · · · 0

] (39)

complete the parametrization of mappings such that the
matrix equation (27) is satisfied. α ∈ R is a free design
parameter which can be used to tune the resulting numerical
approximation while the structure remains preserved.

The subspace of so-defined minimal flows and efforts,
which satisfy the discrete structure equation (29), is a
Dirac structure, which approximates the infinite-dimensional
Stokes-Dirac structure. The evaluation of (30) yields the n×n
interconnection matrices

Jp=−JTq =


α− 1
1−2α α− 1
α 1−2α α− 1

. . .
. . .

. . .
α 1−2α α− 1

 (40)

and the N × 1 input matrices

Bp = STp , Bq = ŜTq . (41)

Remark 3: For the considered Whitney forms, the discrete
flow variables fp, fq ∈ RN can be interpreted as approximate
line integrals of the one-forms fp and fq over the directed
edges. By the mappings Pfp and Pfq , the elements of
f̃p, f̃q ∈ RN become convex sums of discrete flow variables
on neighboring edges. Exceptions are the first and the last
element f̃p1 = (1−α)fp1 and f̃qN = (1−α)fqN with a weight
different from 1 if α 6= 0. This difference must be considered
in the consistent approximation of the constitutive equations.
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TABLE I
DIMENSIONS OF FLOW AND EFFORT VECTORS ON THE 1D GRID

Vector(s) fp, fq ep, eq eb, f b êb, f̂ b f̃p, ẽp f̃q, ẽq

Dimension N N + 1 1 1 N N

B. Constitutive equations

According to (36), the co-state vector ẽp contains the
temperatures at the nodes 1, . . . , N . Assuming a constant
isochoric heat capacity cv , a constant temperature profile
with ẽpj = ēp = const., j = 1, . . . , N corresponds to the
discrete internal energies

p̃i =
cv
N

N∑
j=1

[Pfp]ij ē
p, i = 1, . . . , N. (42)

A consistent discretization of the calorimetric equation based
on this steady state is

p̃ =
cv
N

diag{1−α, 1, . . . , 1} ẽp. (43)

The factor 1−α scales the state p̃1 at the left boundary
compared to p̃2, . . . , p̃N in a constant equilibrium state.
Equivalently, we have

ẽp = Qpp̃ with Qp =
N

c


1

1−α
1

. . .
1

. (44)

If f̃q is the vector of discrete thermodynamic driving forces,
then it contains temperature differences along the edges,
weighted by the elements of Pfq . The consistent compu-
tation of the discrete heat fluxes in the nodes 2, . . . , N+1
from the vector of driving forces is performed via

ẽq = −Qq f̃
q with Qq = λN


1

. . .
1

1
1−α

, (45)

with a constant assumed heat conductivity λ. As for the
calorimetric equation, this discrete relation is derived from
considering Fourier’s law with constant heat fluxes ẽqj =
ēq = const., j = 1, . . . , N . In this case,

N∑
j=1

[Pfq]ij ē
q = −λNf̃qi (46)

holds, from which the above relation follows. Again, the
different last element of Qq accounts for the scaling of
f̃qN compared to f̃q1 , . . . , f̃

q
N−1 when constant temperature

differences fq1 , . . . f
q
N on the original discretization intervals

are considered.

C. State space model

Considering the boundary conditions

êb = T̂pe
p = u, eb = Tqe

q = 0, (47)

as illustrated in Fig. 1, and denoting x := p̃ ∈ RN the state
vector of weighted internal energies on the discretization
intervals, we obtain the finite-dimensional state differential
equation for the heat equation according to (32)

ẋ = Ax + bu (48)

with
A = −JTq QqJqQp, b = JpQqBq. (49)

Multiplication of the solution x with the Hodge matrix Qp

gives the vector of temperatures e = Qpx in the nodes
1, . . . , N−1. As we are interested in the feedforward control
problem for the temperature T (0), the corresponding output
equation is

y = cTx (50)

with
cT =

[
1 0 . . . 0

]
Qp. (51)

The state matrix A is symmetric and pentadiagonal,

A = diag(a0) + diag1(a1) + diag−1(a1)

+ diag2(a2) + diag−2(a2), (52)

with the vectors of main diagonal elements a0 ∈ RN and
the elements on the first two upper and lower off-diagonals
a1 ∈ RN−1 and a2 ∈ RN−2,

a0 = N2
[
−1+α, −2+6α−5α2, −2+6α−6α2, . . . ,

−2+6α−6α2, −2+5α−5α2
]
,

a1 = N2
[
1−3α+2α2, 1−4α+4α2, . . . , 1−4α+4α2

]
,

a2 = N2
[
α−α2, . . . , α−α2

]
. (53)

The input vector is

b = N
[
0, . . . 0, α−α2, 1−2α+2α2

]T
. (54)

a1 and a2 become zero vectors for the cases α = 1
2 and

α = 0, respectively. These two cases will be analyzed in the
following section.

V. APPROXIMATION QUALITY OF THE
NUMERICAL MODELS

We compare the properties of the discretized model to
those of the infinite-dimensional one. In particular, we are
interested in a) the approximation of the eigenvalues of the
system operator and b) the possibility to parametrize the
input u = T (1) (and the state) by the desired flat output
y = T (0) and its time derivatives. We consider the case of
constant material parameters λ

cv
= 1.

A. Properties of the PDE model

To analyze the eigenvalues, we write the 1D heat equation
on (0, 1) ⊂ R with homogeneous boundary conditions:

∂tx(z, t) = ∂2
zx(z, t), ∂zx(0, t) = 0, x(1, t) = 0. (55)

It is easily verified, that an initial condition in the form

x(z, 0) =

∞∑
k=1

ck cos(
√
−λkz) (56)
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with the negative real eigenvalues

λk,∞ = −
(

2k − 1

2
π

)2

, k = 1, 2, . . . (57)

decays according to

x(z, t) =

∞∑
k=1

cke
λkt cos(

√
−λkz). (58)

The Laplace transformation of the heat equation allows to
establish a transfer function between the input û(s) = x̂(1, s)
and the output ŷ(s) = x̂(0, s) as

ŷ(s) =
1

cosh(
√
s)
û(s), (59)

which allows, via a series expansion of cosh(
√
s) and

backtransformation to the time domain a flat parametrization
of the input

u(t) =

∞∑
j=0

1

(2j)!
∂jt y(t). (60)

Choosing an infinitely often differentiable smooth step func-
tion of Gevrey order in the open interval (1, 2) for the desired
output y(t), the convergence of the series is guaranteed and
a flatness-based feedforward control can be determined [9].

B. Approximate eigenvalues and zeros

Based on the structure of the matrices A, b and cT , we
first analyze the eigenvalues and possible zeros of the state
space model (48), (50) for the two cases α = 0 and α = 1

2 .
1) α = 0: The matrices A, b and cT have the structure

A = N2X = N2


−1 1

1 −2
. . .

. . .
. . . 1
1 −2

,

b = N


0
...
0
1

 , cT = N
[
1, 0, . . . , 0

]
.

(61)

The roots λk, k = 1, . . . , N of the characteristic polynomial
p(λ) = det(λI−A) are the roots λ′k of p′(λ′) = det(λ′I−
X), multiplied with N2. The tridiagonal form of X allows
to construct the characteristic polynomial by recursion of
the determinants of south-eastern submatrices. This recursion
resembles the one for the Chebyshev polynomials of the first
kind. With the changes of variables λ′ + 2 = 2µ and µ =
cos(η), one finds the roots of p′

ηk =
2k − 1

2N + 1
π, k = 1, . . . , N, (62)

and finally the eigenvalues of A

λk = 2N2

(
cos(

2k − 1

2N + 1
π)− 1

)
, k = 1, . . . , N. (63)

The invariant zeros are the roots of det(P(η)) with

P(η) =

[
A− ηI b
cT 0

]
(64)

the Rosenbrock matrix. A short calculation shows that

det(P(η)) = (−1)NN4 det([X−ηI]1:N−1,2:N ) = (−1)NN4,
(65)

where [X − ηI]1:N−1,2:N denotes the (N − 1) × (N − 1)
north-eastern submatrix of X−ηI, which is lower triangular.
The discretized models (A,b, cT ) with parameter α = 0
have no invariant zeros. Thus, the output has full relative
degree N . It is a flat output, as the input and the states can
be parametrized in terms of y(t) and its time derivatives,
which allows to compute a feedforward control u(t) as in
the infinite-dimensional case.

The presented discretization of the heat equation conserves
not only the interconnection structure and approximates the
eigenvalues asymptotically, but also preserves the flatness of
the output y(t).

2) α = 1
2 : The A matrix has a chessboard pattern. We

assume an even number N of discretization intervals. The
non-zero elements of A can be collected in the matrix A1 :=
[A]1:2:N−1,1:2:N−1 of odd rows and columns and the matrix
A2 := [A]2:2:N,2:2:N of even rows and columns:

A1 =

(
N

2

)2


−2 1
2 −2 1

1 −2
. . .

. . .
. . . 1
1 −2

,

A2 =

(
N

2

)2


−1 1

1 −2
. . .

. . .
. . . 1
1 −2 1

1 −3

.
(66)

Both matrices are similar, they are related via the equality
A1S = SA2 with the upper triangular matrix

S =


1 −1 1 · · ·

2 −2 · · ·
. . .

. . .
2 −2

2

, (67)

whose elements have alternating sign. Consequently, A1

and A2 have identical eigenvalues. The analysis of the
characteristic polynomial of A2, with the help of the re-
currence relation for Chebyshev polynomials, results in the
eigenvalues

λk =
N2

2

(
cos(

2k − 1

N
π)− 1

)
, k = 1, . . . ,

N

2
. (68)

These eigenvalues of A1 (and by similarity of A2) represent
eigenvalues of the complete state matrix A with algebraic
multiplicity 2.

Defining the partial state vectors x1 := [x]1:2:N−1 and
x2 := [x]2:2:N , the system (48), (50) for α = 1

2 can be
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written [
ẋ1

ẋ2

]
=

[
A1 0
0 A2

] [
x1

x2

]
+

[
b1

b2

]
u,

y =
[
cT1 cT2

] [x1

x2

]
,

(69)

with

b1 = N


0
...
0
1
4

 , b2 = N


0
...
0
1
2

 ,
cT1 = N

[
2, 0, . . . , 0

]
, cT2 = 0T .

(70)

The subsystem

ẋ1 = A1x1 + b1u

y = cT1 x1

(71)

has no invariant zero, i. e. y(t) has relative degree N
2 and

represents a flat output for this subsystem. A feedforward
control u(t) can be computed based on the inversion of the
transfer function G1(s) = cT1 (sI−A)−1b1, only taking into
account y(t) and its time derivatives up to order N

2 .
The control u(t) excites the stable internal dynamics

ẋ2 = A2x + b2u, (72)

whose eigenvalues (i. e. one half of the eigenvalues of A)
coincide with the invariant zeros.

C. Convergence of the eigenvalues

We replace the cosines in the discretized eigenvalue ex-
pressions (63) and (68) by their series expansions and obtain
for α = 0 (see also [8] for this case)

λk = λk,∞

(
1− 1

N
+ o
( 1

N

))
(73)

and for α = 1
2

λk = λk,∞

(
1 +

2λk,∞

4!
(
N
2

)2 + o
( 1(

N
2

)2 )
)
. (74)

We conclude that the eigenvalues of the heat equation are
approximated with a first order error for α = 0 and an error
of second order for α = 1

2 .
Remark 4: The result that α = 1

2 provides a superior ap-
proximation of the eigenvalues supports the observation that
a comparable parametrization of the discretization according
to [3] (also with a parameter value of 1

2 ) yields excellent
results for diffusive systems, see [4]. Note however that
in [3], the mappings of the nodal efforts are parametrized
(while this is the case for the edge flows in our approach).
This gives triangular instead of banded matrices Jp = −JTq ,
which hampers a simple representation of the discretized
eigenvalues and their subsequent convergence analysis for
N → ∞. Moreover, parametrized mappings of the discrete
flows instead of the efforts allow for a straightforward
extension to higher spatial dimensions, see [6].

D. Simulations

We present a series of simulations that support our results
concerning the quality of the finite-dimensional approxima-
tions of the 1D heat equation and their usability for flatness-
based feedforward control.

1) Initial value problem: In Fig. 2, we compare the
numerical solution of the heat equation under Neumann-
Dirichlet boundary conditions (55) with initial condition
(only third mode)

x0(t) = x(z, 0) = cos(
5

2
πz), (75)

with the exact solution at time te = ln 4/
(

5
2π
)2

,

x(z, te) = e−
25
4 π

2tex0(z) =
1

4
x0(z). (76)

While for α = 0, the error over z is reduced by a factor 2
when doubling the number of discretization intervals from
N = 40 to N = 80, we note that the approximation with
α = 1

2 and N = 40 is superior in terms of error magnitude
and shape, which resembles the considered third mode.

2) Flatness-based feedforward control: For the numerical
experiments, we use a simulation model with α = 1

2 , Nsim =
160, which is integrated using Matlab’s lsim with a time step
of 10−5. We consider as reference output y∗(t) = x∗(0, t) a
transient between y(0) = 0 and y(1) = 1, which is described
by a Gevrey class function as in [9]. We use the parameter
γ = 1.1, which leads to Gevrey order 1 − 1

1.1 < 2. The
infinite series (60) to compute the flat input parametrization is
cut after the 10th time derivative of y∗(t). The corresponding
controller is denoted u10

∞(t). For comparison, we compute the
feedforward control based on the inversion of the transfer
functions cT (sI−A)−1b for α = 0 and cT1 (sI−A1)−1b1

for α = 1
2 . The time domain expression for u∗(t) is a finite

weighted sum of y∗(t) and its time derivatives, which is also
cut after the first 10 (or 5, respectively) time derivatives. The
corresponding controllers are denoted u

5/10
N (t), where the

subscript denotes the order N of the control design model
and the superscript the number of time derivatives of the flat
output that were used.

Figure 3 illustrates the solution ep(z, t) = Qpp̃(t) over
space and time of the temperature transient with input u10

40(t).
In Fig. 4, we compare the simulated output with the reference
trajectory for α = 0 (top) and α = 1

2 (bottom), under
variation of N ∈ {40, 80} and the number of used output
derivatives (10 or 5). The different order (1 vs. 2) of the
approximation error is evident from the curves and also the
decreasing effect of higher order derivatives of the flat output
can be observed, comparing the solid with the dotted curves.

VI. CONCLUSIONS

We presented the application of a structure-preserving
discretization scheme to the nD heat equation. For the 1D
case, we analyzed the structure of the finite-dimensional
approximate state space models for two representative pa-
rameter values, for which expressions on the order of the
eigenvalue approximation error could be derived. We showed
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Fig. 2. Top: Exact and numerical solutions of the initial value problem for
the heat equation. Bottom: Errors between numerical and exact solution for
different parametrizations.

Fig. 3. Simulation result with the feedforward controller for predefined
s-shaped transient of y = T (0) = ep(0) with γ = 1.1, corresponding to
Gevrey order 1 + 1

1.1
< 2. Controller design: N = 40, α = 1

2
, using y

and its time derivatives up to order 10. Simulation: Nsim = 160, α = 1
2

.

that the flatness of a given output (the temperature at the
isolated end of the heat conductor), i. e. the possibility to
parametrize inputs and states by the output and its time
derivatives, is conserved for the parameter value α = 0,
which corresponds to a one-sided approximation of the
constitutive equations. The parameter value α = 1

2 (centered
approximation of the constitutive equations) is preferable
in terms of approximation quality. It allows also for a flat
parametrization of the input, although one half of the states is
obtained by integration of the asymptotically stable internal
dynamics. The feedforward control based on this finite-
dimensional approximation model shows high quality, with
the second order of the approximation error confirmed by
simulations under grid refinement.

In ongoing works we exploit the insights concerning
the structure-preserving discretization of hyperbolic and
parabolic systems of conservation laws for the simulation and
computational control of mass and heat transfer phenomena
in three-dimensional heterogeneous media.

Fig. 4. Output errors under flatness-based feedforward control, with the
simulation model with Nsim = 160, α = 1

2
. u10c : Analytic computation of

feedforward control using 10 time derivatives of y. u5/10
40/80

: Computation
of the feedforward control based on the discretized model with α = 1

2
,

N = 40 of 80 and using 5 or 10 time derivatives of the desired output.
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