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Abstract— We present a code-based cryptosystem, in which
we use Reed-Solomon codes as secret codes and a weight
two matrix for masking, to make the system secure against
attacks based on the Schur product. We combine this with the
Guruswami-Sudan list decoding for decryption to get lower key
sizes. As a consequence, we obtain a key size reduction of 21.8%
compared to the standard McEliece cryptosystem proposed by
Bernstein et al.
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I. INTRODUCTION

Code-based cryptography first came up with the McEliece
system [19], which uses a binary irreducible Goppa code as
secret code. To hide this code a permutation matrix and an
invertible matrix are used for scrambling. Eventhough there
is no structural attack on this original proposal, the large
key size (see for example [5]) makes it desirable to search
for systems with smaller key sizes. The Reed-Solomon (RS)
code is the most prefered alternative to reduce the key size.
The proposal to use RS codes directly in the McEliece
system is broken by the attack of Sidelnikov and Shestakov
[26]. To thwart the attack of Sidelnikov and Shestakov the
BBCRS scheme ([1], [2]) is using the sum T+R for masking,
where T is a matrix of weight m and R is a matrix of rank
z. For key size and complexity reasons they focus on small
m and z. This proposal was attacked for some parameters by
Couvreur et al. ([10], [11]), where they use the Schur product
of the public code to find a permutation equivalent code to
the secret RS code. Since the attack works for m < 2, in the
weight two masking proposal by Bolkema et al. in [6], it is
claimed that a matrix of constant row weight two will hide
the structure of the secret RS code, even under the Schur
product.

Another idea to reduce the key size came from Barbier
and Barreto in [3] by using list decoding in the decryption
step of the original McEliece system using Goppa codes.
They use the Guruswami-Sudan list decoding algorithm [16],
which assymptotically corrects up to n−

√
kn errors, where

n is the length of the code and k is the dimension. In our
cryptosystem we use the Guruswami-Sudan list decoding for
RS codes along with improvements by Kötter [20] and Roth-
Ruckenstein [24].

In this article we propose a cryptosystem, where we
combine the idea of the weight two masking on the Reed-
Solomon structure and using list decoding in the decryption.
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In Section II we explain the Guruswami-Sudan list decoding
algorithm with the number of errors it can correct, the list
size and the complexity of the algorithm. In Section III we
present the cryptosystem in detail with the hash function used
in the encryption and the list decoding used in the decryption.
In the Section IV we make a cryptoanalysis of the proposed
system, where we give experimental results providing strong
evidence for security against the Schur product attack. In
the Section V we compare the key size of the proposed
cryptosystem against the key size using unique decoding and
against the standard McEliece system in [5].

II. LIST DECODING OF GRS CODES

We first recall the definition of a generalized Reed-
Solomon (GRS) code. Let Fq be a finite field and let 1 ≤
k < n ≤ q be integers. Let α = (α1, . . . , αn) ∈ Fn

q be an
n-tuple of distinct elements and β = (β1, . . . , βn) ∈ Fn

q be
an n-tuple of nonzero elements, then the generalized Reed-
Solomon code GRSn,k(α, β) of dimension k is the set of
vectors (β1p(α1), . . . , βnp(αn)), where p ranges over all
polynomials of degree less than k having coefficients in Fq .
Thus

GRSn,k(α, β) ={
(β1p(α1), . . . , βnp(αn))

∣∣ p ∈ Fq[x], deg(p) < k
}
.

The GRS code has the minimum Hamming distance d =
n − k + 1, and hence can uniquely correct upto d/2 errors
using efficient algorithms such as the Berlekamp-Massey
algorithm ([4], [18]). In 1999, Guruswami and Sudan [16]
published a polynomial time list decoding algorithm for
Reed-Solomon codes that can correct errors beyond the d/2
error-correcting bound.

The Guruswami-Sudan (GS) decoding algorithm has an
internal parameter m, called the interpolation multiplicity.
The bound on the number of errors the GS algorithm can
correct is associated to m and is given by

tm = n

(
1−

√
R

(
m+ 1

m

))
,

where n is the length of the Reed-Solomon code and R is
its rate.

Let C be a Reed-Solomon code RSn,k(α) of length n and
dimension k over a finite field Fq . Given z = (z1, . . . , zn) in
Fn
q , the GS algorithm finds all the polynomials p(x) of degree

less than k, such that the codeword (p(α1), . . . , p(αn)) has
Hamming distance ≤ tm from z. The GS algorithm involves
two major steps:
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1) (Interpolation step) Construct a bivariate polynomial
Q(x, y) =

∑
i,j ai,jx

iyj such that Q has a zero of
multiplicity m at each of the points (αi, zi) and the
(1, k − 1)-weighted degree of Q(x, y) is minimal.

2) (Factorization step) Compute the factors of Q(x, y) of
the form y − p(x) with degree of p(x) less than k.

The output of the algorithm is a list Lm of codewords of
C, which includes all the codewords with Hamming distance
≤ tm from z. The size of the list is bounded above by

`m =

(
m+

1

2

)√
n

k − 1
.

In [16] the main aim of Guruswami and Sudan was
to show the existence of a polynomial-time list decoding
algorithm and not the efficiency of the algorithm. However,
several authors have contributed to improve the efficiency of
the key steps in the GS algorithm. Some noteworthy con-
tributions are by Kötter, described by McEliece in [20], for
the interpolation step and by Roth-Ruckenstein [24] for the
factorization step. Using Kötter’s improvement, inspired by
the Feng-Tzeng algorithm [13], the interpolation algorithm
takes O(n2m4) field operations. Whereas the factorization
algorithm, using the Roth-Ruckenstein improvement, takes
O(n2m2) field operations. Hence the overall complexity of
the GS algorithm is O(n2m4) field operations. For more
details on the GS algorithm and improvements by Kötter
and Roth-Ruckenstein we refer the reader to [20].

In the following cryptosystem we use the GS algorithm
for decryption with an aim to reduce the size of the keys.
Although the running time of the GS list decoding algorithm
is high, the trade-off between the running time and the
key size can easily be achieved. In the following proposed
cryptosystem we used the interpolation multiplicity m =
bn1/2c and achieved nearly 7 % reduction in the key sizes
compared to unique decoding, see Section V.

III. THE CRYPTOSYSTEM

In this section we will present the proposed cryptosystem
in the McEliece version. The Niederreiter version of the
proposed cryptosystem is similar to the McEliece version,
using the (n−k)×n parity check matrix H of C and in the
encryption one computes the syndrome of the message.

For the key generation take a GRS code C =
GRSn,k(α, β) of dimension k and length n over the finite
field Fq and choose a generator matrix G of C, given in the
canonical form

G =


β1 · · · βn
β1α1 · · · βnαn

...
...

β1α
k−1
1 · · · βnα

k−1
n

 .

Choose a random k × k invertible matrix S and an
invertible n× n matrix Q of constant row weight two, both
over Fq . Then we compute G′ = SGQ−1. Let R = k

n be the
rate of the code C. Let m be the interpolation multiplicity of
the GS algorithm, which we use during decryption. Since Q

is of constant weight two, the amount of the errors we add
in the encryption step is then given by

t =

⌊
tm
2

⌋
=

⌊
n

2

(
1−

√
R

(
m+ 1

m

))⌋
.

Since the GS algorithm gives us a list of possible messages,
we also send hash of the message in the cipher in order to
recover the sent message. Let H be a fixed hash function,
globally known, with output size of h bits. The value of h
depends on the list size `m in such a way that we do not
encounter second pre-images in the list of hash values of
possible messages.

The public key is given by (G′, t, h).
The encryption step works as follows. Let x ∈ Fk

q be the
message. Then compute

y = xG′ + e,

where e ∈ Fn
q is an error vector of weight less than or

equal to t. The cipher is then given by (y,H(x)). For the
decryption one computes

y′ = yQ = xSG+ eQ.

Since wt(eQ) ≤ btmc, we list decode y′ to get a list Lm of
possible messages, say

Lm = {z1, . . . , z`m}.

In order to recover the original message x from the list, we
compute H(zi) for all i ∈ {1, . . . , `m} and compare it with
H(x). The sent message x is given by the zj for which
H(zj) = H(x).

The output size h of the hash function should be chosen
in such a way that the probability of finding a second pre-
image of H(x) in the list {H(z)|z ∈ Lm} is negligible. In
order to achieve that, h should be chosen sufficiently larger
than log2 (`m).

Let z ∈ Lm with z 6= x. With an ideal hash func-
tion, the probability that H(z) = H(x) is 2−h. Hence
the probability of finding a second pre-image of H(x)
is 1 −

(
1− 2−h

)(`m−1). From Section II we know that
`m = O(n1/2). Assuming that the rate R > 1/4 we get
`m ≤ 2bn1/2c + 1. Hence h should be chosen sufficiently
larger than log2(2n

1/2 + 1). In practice, if n = 210, then
h = 14 should be sufficient. In this case, the probability of
finding a second pre-image is less than 0.0039, hence 0.4 %.
Note that the probability of decryption failure can further be
reduced by simply increasing the value of h.

Since we are taking m = bn1/2c by Section II, we get the
decryption complexity to be O(n4) field operations.

IV. SECURITY

In this section we will discuss the security of the proposed
cryptosystem in Section III. In theory the Niederreiter version
has equivalent security to the McEliece version by [17].
However, the McEliece cryptosystem has a disadvantage
when the same message is encrypted multiple times (see [7],
[8]). In the following we consider the Niederreiter version
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of the proposed cryptosystem. Note that in the Niederreiter
system we take a (n − k) × n parity check matrix H of a
GRS code and Q an invertible n×n matrix of constant row
weight two. We do not consider the influence of the invertible
matrix S, since this gives the same code. Hence the public
matrix is given by HQ. Clearly the attack of Sidelnikov and
Shestakov [26] can not be applied, since the public code is
not permutation equivalent to the secret GRS code.

The security of the weight two masking is already dis-
cussed in [1], [2], a scheme of which the weight two masking
is a special case of. The only structural attack to the scheme
of ([1], [2]) are the attacks based on the Schur product ([14],
[11]).

A. Attack based on Schur product of public matrix

For the attack based on the Schur product we need to
introduce some definitions and notations.

Definition 1 (Schur product). Let x, y ∈ Fn
q . We denote by

the Schur product of x and y their componentwise product

x ? y = (x1y1, . . . , xnyn).

Remark 2. The Schur product is symmetric and bilinear.

Definition 3 (Schur product of codes and square code). Let
A,B be two codes of length n. The Schur product of two
codes is the vector space spanned by all a ? b with a ∈ A
and b ∈ B:

〈A ? B〉 = 〈{a ? b
∣∣ a ∈ A, b ∈ B}〉.

If A = B, then we call 〈A ? A〉 the square code of A and
denote it by 〈A2〉.

Definition 4 (Schur matrix). Let G be a k× n matrix, with
rows (gi)1≤i≤k. The Schur matrix of G, denoted by S(G)
consists of the rows gi ? gj for 1 ≤ i ≤ j ≤ k.

Using Remark 2, we observe that if G is a generator matrix
of a code C then its Schur matrix S(G) is a generator matrix
of the square code of C. Let s be the following map

s : N → N
k 7→ 1

2

(
k2 + k

)
.

For a k × n matrix A, we observe that S(A) has the size
s(k)× n.

In [1], [2], Baldi et al. proposed the BBCRS scheme which
uses GRS codes as secret codes and as scrambling matrix the
sum T +R, where T is of row weight m and R is of rank
z. In [14], Gauthier-Umaña et al. were able to attack this
proposal for m = 1, z = 1 and k < n−2

2 or k > n+2
2 . This

attack is based on the fact that the square code of a GRS code
has small dimension. Even after the scrambling with T +R,
the square code dimension is still low whereas for a random
secret code the dimension is with high probability maximal
(see [9], [12], [22]). With this they can construct a subcode
of the public code, which is also a subcode of a permutation
equivalent GRS code to the secret code. In [11] Couvreur et
al. were able to extend this attack for m ≤ 1 + k/n < 2.

In this extended attack it is observed that in the Niederreiter
version of the BBCRS scheme puncturing the public code
gives a small square code dimension. This helps to detect
the weights of the rows of T and reduce to the case z = 1
and m = 1.

Altough these attacks are only for certain values of the
scheme, it is not excluded that the whole scheme is vulnera-
ble to the Schur product attacks. The purpose of the weight
two masking is to be a countermeasure to these attacks. More
precisely we claim that raising m to 2 is enough for the Schur
product attacks to fail, which aims in proving that under the
weight two masking the square code of the public code has
maximal dimension and thus it behaves like a random code.
We provide experimental results, which give evidence that
this is indeed the case with high probability.

The security of the proposed cryptosystem against the
attack based on the Schur product relies on the following;
for a parity check matrix H of any GRS code and a random
matrix Q of constant row weight two, the Schur matrix of
HQ has with high probability maximal rank.

In the experiments, for sufficiently large n the Schur
matrix of HQ always had maximal rank. As a consequence,
we conjecture the following statement.

Conjecture 5. Let H be a parity check matrix of a random
GRS code of length n and dimension k over a finite field
Fq . Let Q represent a weight two matrix having variables
x1, . . . , xn, y1, . . . , yn as the nonzero entries. Then the Schur
matrix S(HQ) ∈ Fq[x1, . . . , xn, y1, . . . , yn]

s(n−k)×n has
maximal rank, i.e. there exist a nontrivial u × u minor of
S(HQ), where u = min {s(n− k), n}.

Note that each entry in the ith column of S(HQ) is a
homogeneous polynomial of degree 2 in the variables xi and
yi. Since the variables y1, . . . , yn are representing nonzero
elements of Fq , we can normalize yi in each column. Hence
we can assume that S(HQ) ∈ Fq[x1, . . . , xn]

s(n−k)×n.
If Conjecture 5 holds, we can assume that the nontrivial

u × u minor is the leading u × u minor. Let p(x1, . . . , xu)
be this nontrivial u × u minor. The total degree of p is at
most 2u and each individual degree degxi

(p) is at most 2.
We use the Schwartz-Zippel lemma to get a bound on the
number of points in

(
F×q
)n

where p is non-zero.

Theorem 6 (Schwartz-Zippel lemma [25], [29]). Let f ∈
Fq[x1, x2, . . . , xn] be a nontrivial polynomial of total degree
d over a finite field Fq . Let S be a subset of Fq . Then f is

nonzero on at least a fraction
(
1− d

|S|

)
of points in S.

We apply the Schwartz-Zippel lemma iteratively on each
variable of p with S = F×q , to get the following corollary.

Corollary 7. Let p(x1, . . . , xu) be the nontrivial u × u
minor of S(HQ). Then p is nonzero on at least a fraction(
1− 2

q − 1

)u

of points in
(
F×q
)u

.

Let PH(q, n) denote the fraction of weight two matrices
giving maximal S(HQ) rank for a given parity check matrix
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H .
For example, let H be a parity check matrix of a random

GRS code of length n = 8 and dimension 4 over the field
F9. Since all the Reed-Solomon codes of length 8 over
F9 are permutation equivalent to each other, PH(9, 8) is
invariant of H . Then the Corollary 7 says that P (9, 8) ≥
(1−2/8)8 = 0.1001. However we computed the exact value
of P (9, 8) ≈ 0.988, which is much higher than the bound
given by Corollary 7.

In Section IV-B, we see that for fixed field size q and
length of the code n, the smallest key size is achieved
at the rate 1/2. Thus for any n ≥ 8, we have u =
min {s(n− k), n} = n. The lower bound on PH(q, n) is
then (1− 2/(q − 1))

n. This implies that for a fixed n, the
lower bound tends to 1 as q increases.

For fixed n = 8 and n = 9 respectively, we performed
Monte-Carlo experiments to get an estimate on the fraction
PH(q, n) for increasing q. Let P̃H (q, n) denote an estimate
of PH(q, n) computed on Sage by taking 107 random
constant row weight two matrices Q. By randomly varying
the parity check matrix H , we compute the average of
P̃H (q, n), denoted by µ(P̃H (q, n)). In Figure 1 and Figure
2, corresponding to n = 8 and n = 9 respectively, we
observe that µ(P̃H (q, n)) tends to 1 much faster than the
Schwartz-Zippel lower bound.

Fig. 1: Estimate of µ(P̃H (q, 8)) obtained from Monte-Carlo
tests on 107 weight two matrices

Fig. 2: Estimate of µ(P̃H (q, 9)) obtained from Monte-Carlo
tests on 107 weight two matrices

In further experiments for n ≥ 12, we noticed the rank
of Schur matrix S(HQ) for a randomly chosen weight two

matrix Q is always maximal. Experimental and therotical
ananlysis on the rank of Schur matrix is also presented
in detail by Weger in [28]. These computations infer that,
like random linear codes, the rank of Schur matrix S(HQ)
is maximal with high probability. As a conclusion, these
experiments tend to imply that the proposed cryptosystem
is not vulnerable to the attacks based on Schur product of
the public matrix.

B. ISD

The information set decoding (ISD) attack (see for exam-
ple [23], which is a generalization of Stern’s algorithm [27])
is a non-structural attack, it decodes a random code without
exploiting any structural property of the code, hence it is
non-polynomial in the dimension of the code.

The ISD attack takes as input q, n, k, t, where t is the
weight of the error vector. In the case of the weight two
masking without list decoding we have

t =

⌊
n− k
4

⌋
.

In the case of the weight two masking with list decoding we
introduce the rate R = k

n and the interpolation multiplicity
m = bn1/2c, and we have

t =

⌊
n

2

(
1−

√
R

(
m+ 1

m

))⌋
.

We propose to use the following parameters in the pro-
posed cryptosystem to achieve a 80 bit security against the
ISD attack; q = 401, n = 400 and k = 200, hence the rate is
R = 1

2 , the interpolation multiplicity is m = 20 and t = 55.
This gives a key of size 360000 bits. Observe that we choose
rate 1/2 as this gives the smallest key size:

Rate q n k Key Size (bits)
0.3 457 456 136 391680

0.35 431 430 150 378000
0.4 419 418 167 377253

0.45 409 408 183 370575
0.5 401 400 200 360000

0.55 409 408 224 370944
0.6 421 420 252 381024

0.65 439 438 284 393624
0.7 479 478 334 432864

TABLE I: Comparing key sizes for different rates having 80
bit security against ISD attack

For 128 bit security against the ISD attack, we propose to
use the parameters q = 701, n = 700 and k = 350, hence
R = 1

2 ,m = 26 and t = 97. This gives a key of size 1225000
bits. Again rate 1/2 was the rate achieving smallest key size,
see Table II.

The tables are for fixed 280 resp. 2128 binary operations
costs of the ISD attack, this was computed by a PARI/GP
script provided by Peters in [23].

Since we are proposing to use rate 1/2 observe that there
is no key size advantage in using the Niederreiter version
instead of the McEliece version.
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Rate q n k Key Size (bits)
0.3 811 810 243 1377810

0.35 761 760 266 1314040
0.4 729 728 291 1271670

0.45 709 708 318 1240200
0.5 701 700 350 1225000

0.55 709 708 389 1240910
0.6 727 726 435 1265850

0.65 751 750 487 1280810
0.7 797 796 557 1331230

TABLE II: Comparing key sizes for different rates having
128 bit security against ISD attack

V. KEY SIZE

In this section we compare the key sizes of the different
proposals. Table III compares key sizes for fixed 280 binary
operations costs of the ISD attack, this was computed by a
PARI/GP script provided by Peters in [23]. For 80 bit security
we propose to use the weight two masking with list decoding
with the parameters q = 401, n = 400, k = 200, which gives
a key of size 360000 bits. Whereas the weight two masking
with unique decoding is proposed for the parameters q =
479, n = 478, k = 358, which gives a key size of 386640
bits. The proposed parameters for the McEliece system using
Goppa codes by Bernstein et al. in [5] are q = 211, n =
1632, k = 1269, which gives a key size of 460647 bits.

Cryptosystem q n k Key Size
Weight Two, List Decoding 401 400 200 360000

Weight Two, Unique Decoding 479 478 358 386640
McEliece with Goppa Codes 2048 1632 1269 460647

TABLE III: Comparing key sizes (in bits) for different
cryptosystems having 80 bit security against ISD attack

We observe that the weight two masking with list decoding
reduces the key size of the weight two masking with unique
decoding by 6.9% and it reduces the key size of the proposed
McEliece system with Goppa codes by 21.8%.

Table IV compares key sizes for fixed 2128 binary op-
erations costs of the ISD attack. For 128 bit security we
propose to use the weight two masking with list decoding
with the parameters q = 701, n = 700, k = 350, which
gives a key of size 1225000 bits. Whereas the weight two
masking with unique decoding is proposed for the parameters
q = 907, n = 906, k = 724, which gives a key size of
1317680 bits. The proposed parameters for the McEliece
system using Goppa codes by Bernstein et al. in [5] are
q = 212, n = 2960, k = 2288, which gives a key size of
1537536 bits.

Cryptosystem q n k Key Size
Weight Two, List Decoding 701 700 350 1225000

Weight Two, Unique Decoding 907 906 724 1317680
McEliece with Goppa Codes 4096 2960 2288 1537536

TABLE IV: Comparing key sizes (in bits) for different
cryptosystems having 128 bit security against ISD attack

We observe that the weight two masking with list decoding
reduces the key size of the weight two masking with unique
decoding by 7.0% and it reduces the key size of the proposed
McEliece system with Goppa codes by 20.3%.

It is also noteworthy to mention that the weight two
masking even with unique decoding obtains nearly 16% and
14% smaller key size compared to the proposed McEliece
cryptosystem for 80 bit and 128 bit security, respectively.

VI. CONCLUSION

In this work we presented a code-based cryptosystem,
which uses a Reed-Solomon code as the secret code and an
invertible matrix of constant row weight two for masking.
This masking appears to be hiding the algebraic structure of
the private Reed-Solomon code against all known attacks.
In particular, we analysed the effect of the weight two
masking on the security against the attack based on the Schur
product, which has become an enormous threat to code-based
cryptosystems. Furthermore, with a view to reduce the key
size, we used the Guruswami-Sudan list decoding algorithm
in the decryption step. We recovered the original message
from the list by including hash of the message in the cipher.
The list decoding allowed us to correct more errors compared
to unique decoding and hence results in smaller key size.
For example, for 80-bit security level against ISD attack, the
key size of the proposed cryptosystem is 360000 bits, which
is 21.8% less than the key size of the standard McEliece
cryptosystem proposed by Bernstein et al. in [5].
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NOTES

The Guruswami-Sudan error correction capacity bound
can be improved, for example with the Parvaresh-Vardy
[21] or Guruswami-Rudra algorithm [15], when using folded
Reed-Solomon codes. A folded Reed-Solomon code is a
Reed-Solomon code viewed over an extension field. We
observed that the folded Reed-Solomon code cannot be used
directly in the key generation, since it is a non-linear code.
Nevertheless, one can use a Reed-Solomon code during
encryption and fold the received cipher with a folding
parameter m. To get a better error correction bound, one
needs to bundle the error positions in the encryption step,
and in order not to destroy this bundling, one should also
use a weight two matrix of block diagonal form. We noted,
that the public key is then vulnerable to ISD attack on the
smaller subcodes.
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