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Abstract— This paper develops new results on the stability
and stabilization of symmetric active ladder circuits, which
are a class of spatially interconnected systems. Ladder circuits
can be considered as two–dimensional systems constituted as
a homogenous (in the node structure and/or in parameters of
nodes values) sequence of nodes (or cells) where information is
propagated in two separate directions, i.e., along the time axis
and along a space variable represented by a node number.
In contrast to previous research in this general area, the
independent energy source is placed in the center of the ladder.
A new two-dimensional systems state-space model is developed
for this case, leading to a new equivalent linear time-invariant
model in one indeterminate obtained by applying a form
of lifting along the nodes. Using this model description, the
problems of stability testing and stabilization are addressed in
a linear matrix inequality setting. A numerical case study is
also given to illustrate the application of the new results.
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I. INTRODUCTION

Ladder circuits can be considered as a particular case of
spatially interconnected systems as are formed by a series of
connected cells. Each cell is formed from resistances, reac-
tances (impedances, in general) and also contains controlled
and autonomous sources. The presence of controlled sources
results in an active circuit and hence possibly unstable
(without active sources a circuit is passive and hence always
stable). Autonomous sources realize spatially distributed
control inputs. In this paper, the circuit is assumed to have
the same structure and parameter values that do not vary
with the node number. The circuit to be analyzed is a series
and/or parallel or mixed connection of these single cells.

Such ladder circuits can be a useful tool in, e.g., fil-
ter analysis and design, modeling delay lines, transmission
lines, chains of transmission gates or long wire interconnec-
tions [1]. Another possible application is in deriving approx-
imate models of, e.g., distributed parameter systems [2]. For
a detailed discussion, refer on this general area see, e.g., [3]
and references therein.
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In previous research, (see e.g. [4] and references therein)
interconnected systems were considered, particularly non-
symmetric ladder circuits represented as linear two dimen-
sional (2D) hybrid (discrete–differential) systems for the case
where the whole system is fed from the left hand side and
loaded from the right hand side. The temporal dynamics
were assumed to be governed by a continuous variable and
the spatial dynamics (along the circuit nodes) by a discrete
variable. This paper presents similar results for the symmetric
case when the system is fed in the central circuit part and
the possible loads are at the both left and right hand side
ends.

For this new case, with the symmetry present, left and
right hand side blocks can be combined into one common
model, resulting in a bivariate, hybrid (discrete–differential)
state-space model where the indeterminates are time (con-
tinuous variable) and node number (discrete variable). The
symmetry, i.e. constant along the nodes, cell structure and
their parameters, guarantees that the resulting overall model
for the dynamics is node independent. Moreover, this model
is characterized by non-causal spatial dynamics, i.e. the
dynamics of a node dynamics depends on the dynamics of
the elements it is composed from and those of the nodes on
either side of it. Hence, lifting along the spatial variable is
used to obtain a temporal, or 1D, model of the dynamics as
the spatial dynamics are embedded in the overall structure.
The same approach can also be applied to circuits with
variable along the nodes cell structures and parameters -
for the first results see e.g. [5]. Finally, stability conditions
and stabilizing control laws are developed and verified by
numerical example.

Throughout this paper M � 0 (respectively ≺ 0) denotes
a real symmetric positive (respectively negative) definite ma-
trix. The null matrix with the required dimensions is denoted
by 0 respectively. The symbol diag{W1,W2, · · · ,WM}
denotes a block diagonal matrix with diagonal blocks
W1, W2, · · · ,WM .

II. SYMMETRIC LADDER SYSTEMS AND THEIR
STATE-SPACE MODELS

The symmetric systems considered are shown in Fig.1
where the right (left) hand side blocks are shown in Figs. 2
and 3, respectively.

In common with other areas of circuit analysis, the
state variables are chosen as the inductor currents denoted
by iL(p, t) (right-hand side) and iL(p, t) (left-hand side),
respectively, the capacitor voltages UC(p, t), or UC(p, t),
where p denotes the node number and t ∈ R is the time
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Fig. 1. Symmetric ladder system

Fig. 2. Right hand side block

Fig. 3. Left hand side block

variable. A variable on the left hand side of the circuit is
denoted by ω and bω denotes a right hand side variable.
Also the elements in the circuit are taken as constants. The
circuit is also symmetric and contains the same number, α,
of left and right hand side nodes, i.e., p = 1, 2, · · · , α and
the central node is denoted by p = 0 (see Fig. 4).

Introduce the right and left hand side state vectors as

xR(p, t) =

[
UC(p, t)
iL(p, t)

]
, xL(p, t) =

[
UC(p, t)
iL(p, t)

]
, (1)

respectively. Moreover, the circuits considered, denoted
RLCM , with no controlled sources cannot be unstable.
Assume, therefore that current sources i(p, t) and i(p, t) are
controlled abusing

i(p, t) = γUc(p+ 1, t), i(p, t) = γU c(p+ 1, t), (2)

where γ is a known real number and hence the resulting
active system can be unstable for some values of this number.
The voltage sources E(p, t) (E(p, t) for the left hand side
of the circuit) are independent and serve as the distributed
control for the circuit, termed a system from this point
onwards.

Fig. 4. Central block

A. Central part of the system

Consider first the central part of the system, shown in
Fig. 4. To obtain the governing state-space equations first
apply Kirchhoff’s voltage law to the right (left) hand side
branch between nodes 0 and 1, respectively, to obtain

U(0, t)−UC(1, t) = L
d

dt
iL(1, t)+R1iL(1, t)−E(1, t),

U(0, t)−UC(1, t) = L
d

dt
iL(1, t)+R1iL(1, t)−E(1, t).

Next, applying Kirchhoff’s current law to node 1 from the
right and left hand sides, respectively, gives

C
d

dt
UC(1, t) = i(1, t)− 1

R2
UC(1, t)+iL(1, t)−iL(2, t),

C
d

dt
UC(1, t) = i(1, t)− 1

R2
UC(1, t)+iL(1, t)−iL(2, t)

where

U(0, t) = E(0, t)−R(iL(1, t) + il(1, t). (3)

Combining these equations, introducing (2) and apply-
ing (1) yields the following state-space equation for the right
hand side block S1

d

dt
xR(1, t) =

[
− 1
R2C

1
C

− 1
L −R1+R2

L

]
xR(1, t)

+

[
γ
C − 1

C
0 0

]
xR(2, t) +

[
0 0
0 −R1

L

]
xL(1, t)

+

[
0

1
L (E(0, t)+E(1, t))

]
(4)

=A02xR(1, t) +A03xR(2, t) +A01xL(1, t)

+ BuR(1, t),

where B =

[
0
1
L

]
. The corresponding model for the left hand

side block S1 is
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d

dt
xL(1, t) =

[
− 1
R2C

1
C

− 1
L −R1+R2

L

]
xL(1, t)

+

[
γ
C − 1

C
0 0

]
xL(2, t) +

[
0 0
0 −R1

L

]
xR(1, t)

+

[
0

1
L (E(0, t) + E(1, t))

]
(5)

=A02xL(1, t) +A03xL(2, t) +A01xR(1, t)

+ BuL(1, t),

with B as in the previous model. Hence, the input signal to
the blocks S1 and S1, respectively, is given as

uR(1, t)=E(0, t)+E(1, t) and uL(1, t)=E(0, t)+E(1, t).
(6)

Both these sets of equations have an identical form, except
that signals denoted by v are replaced by v and vice versa
(except for node 1).

B. Right and left hand side blocks

The right hand side structure is shown in Fig. 5 and the
left hand structure in Fig. 6. Applying a similar approach as
in previous subsection to nodes p = 2, 3, . . . , α of the right
and side blocks Sp, gives, as in previous work, (e.g., [3]
and references therein) the following 2D differential-discrete
state-space model

d

dt
xR(p, t) = A1xR(p− 1, t) +A2xR(p, t) (7)

+A3xR(p+ 1, t) + BuR(p, t),

where uR(p, t) = E(p, t), denote the distributed along nodes
input vectors. The matrices in the model (7) are

A1=

[
γ
C

0
1
L

0

]
,A2=

[
− 1
R2C

1
C

− 1
L

−R1
L

]
,A3=

[
0 − 1

C
0 0

]
(8)

and the matrix B is again given by (4).
By a similar analysis, the 2D differential-discrete state-

space model is for the left hand side blocks (Sp) is

d

dt
xL(p, t) =A1xL(p− 1, t) +A2xL(p, t) (9)

+A3xL(p+ 1, t) + BuL(p, t),

where uL(p, t) = E(p, t) and model matrices are again given
by (8). To complete the description, the following boundary
conditions are assumed

xR(p, 0) = 0, xL(p, 0) = 0, 1 ≤ p ≤ α. (10)

III. THE 1D EQUIVALENT MODEL

First, the structure introduced by the symmetrically placed
cells models is exploited by introducing the ’common’ state
and input vectors together with the augmented input vector
as

x(p, t) =

[
xR(p, t)
xL(p, t)

]
, u(p, t) =

[
uR(p, t)
uL(p, t)

]
,

ũ(p, t) =

[
u(p, t)
u(p, t)

]

Then using (4)-(5)

d

dt
x(1, t) =

[
A02 A01

A01 A02

]
x(1, t) +

[
A03 0

0 A03

]
x(2, t)

+

[
B
B

]
u(1, t)

or

d

dt
x(1, t) =

[
A02 A01

A01 A02

]
x(1, t) +

[
A03 0

0 A03

]
x(2, t)

(11)

+

[
B 0
0 B

]
ũ(1, t)

=Â2x(1, t) + Â3x(2, t) + B̃ũ(1, t).

Similarly, for (7)-(9)

d

dt
x(p, t) =

[
A1 0
0 A1

]
x(p−1, t) +

[
A2 0
0 A2

]
x(p, t)

+

[
A3 0
0 A3

]
x(p+1, t) +

[
B 0
0 B

]
ũ(p, t)

=Ã1x(p− 1, t) + Ã2x(p, t) + Ã3x(p+ 1, t)

+ B̃ũ(p, t).

This approach can also be used for circuits constructed
from different in structure and/or parameter values cell if
the number of left and right hand side cells is the same. In
such a case, however, the overall system is not node number
constant. If the number of left and right hand side cells are
not the same, a number of models will remain single as there
is no symmetric counterpart.

The next step is to apply the lifting along the spatial
variables, which produces the possibly high dimensional 1D
system description, for which, due to the spatial symmetry
of the system, one description for the left and right hand
side cells models can be used. The lifted model is defined
in terms of the following state and input super-vectors x(t)
and u(t), i.e.:

x(t) =
[
x(1, t)T , x(2, t)T , . . . x(α, t)T

]T
, (12)

u(t) =
[
ũ(1, t)T , ũ(2, t)T , . . . ũ(α, t)T

]T
.

Hence an augmented state-model for the system dynamics is

d

dt
x(t) = Φx(t) + Ψu(t), (13)

where

Φ =



Â2 Â3 0 0

Ã1 Ã2 Ã3 0

0 Ã1 Ã2 Ã3 0
. . . . . . . . . 0

0 Ã1 Ã2 Ã3

0 0 Ã1 Ã2


, (14)

Ψ = diag{B̃, B̃, · · · , B̃}
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Fig. 5. Right hand structure

Fig. 6. Left hand structure

and also Φ is a block Toeplitz matrix. In this representation
the dynamics in p (along the nodes) are absorbed into the
super-vectors.

IV. STABILITY ANALYSIS AND STABILIZATION

The following result characterizes the stability properties
of the systems considered.

Lemma 1: [6] The system described by (13) with no
control inputs is stable if and only if ∃ P � 0, such that the
following Linear Matrix Inequality (LMI) condition holds

ΦTP + PΦ ≺ 0. (15)
The assumption of a fully populated matrix P in Lemma 1

can lead to computational problems when the length of the
circuit α is large. However, the 1D model matrix Φ has a
block tridiagonal structure and hence it is not necessary to
assume that P is fully populated. This leads to the following
theorem, which gives a sufficient condition for stability,
where the dimensions of the matrices involved have been
much reduced.

Theorem 1: The system described by (13) with no control
inputs is stable, if ∃ P = diag(P1, P2, · · · , Pα) � 0, Pp =
diag(P ∗

p , P
∗
p ), p = 1, 2, . . . , α, such that the following LMI

condition holds
ΦTP + PΦ ≺ 0. (16)

Remark 1: Given the structure of the system matrix Φ it
follows that, except for the first tri-diagonal blocks (which
relate to node no. 1), every block row is repeated but shifted
one block column to the right relative to its predecessor.
Hence, further reduction of the dimensions of the matrices
(the total number of decision variables) is still possible,
e.g., Pp = diag(P, P ), p = 2, 3, . . . , α. However, such
simplification may come at the cost of increasing the con-
servativeness of the LMIs.

A. Controller design

Consider the following variable with the node numbers
control law

u(1, t) =u2(1, t) + u3(3, t)

=K2(1)x(1, t) +K3(2)x(2, t)

u(p, t) =u1(p, t) + u2(p, t) + u3(p, t)

=K1(p)x(p− 1, t) +K2(p)x(p, t)

+K3(p)x(p+ 1, t)

(17)

or in equivalent 1D model form

u(t) = Kx(t), (18)

where

K =



K2(1) K3(1) 0 . . .
K1(2) K2(2) K3(2) 0

0 K1(3) K2(3) K3(3)
...

. . . . . . . . .
...

. . . 0 K1(α−1)
0 . . . . . . 0

. . . 0
. . .

...
. . .

...
. . . 0

K2(α−1) K3(α−1)
K1(α) K2(α)



(19)
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and

K2(1) =

[
K2

2 (1) K2
3 (1)

K2
3 (1) K2

2 (1)

]
,

K2(p) =

[
K2

2 (p) 0
0 K2

2 (p)

]
, p = 2, 3, . . . , α

K1(p) =

[
K1

1 (p) 0
0 K1

1 (p)

]
, p = 1, 2, . . . , α

K3(p) =

[
K3

3 (p) 0
0 K3

3 (p)

]
, p = 1, 2, . . . , α.

Theorem 2: Suppose that the control law (18) is applied
to a system described by (13). Then, under the standard
controllability assumption, the resulting controlled model
is stable, if ∃ Q = diag(Q1, Q2, . . . , Qα) � 0, where
Q(p) = diag(Q∗

p, Q
∗
p), p = 1, 2, . . . , α and

N =



N2(1) N3(1) 0 . . .
N1(2) N2(2) N3(2) 0

0 N1(3) N2(3) N3(3)
...

. . . . . . . . .
...

. . . 0 N1(α−1)
0 . . . . . . 0

. . . 0
. . .

...
. . .

...
. . . 0

N2(α−1) N3(α−1)
N1(α) N2(α)



(20)

and

N2(1) =

[
N2

2 (1) N2
3 (1)

N2
3 (1) N2

2 (1)

]
,

N2(p) =

[
N2

2 (p) 0
0 N2

2 (p)

]
, p = 2, 3, . . . , α

N1(p) =

[
N1

1 (p) 0
0 N1

1 (p)

]
, p = 1, 2, . . . , α

N3(p) =

[
N3

3 (p) 0
0 N3

3 (p)

]
, p = 1, 2, . . . , α

of compatible dimensions, such that the following LMI
condition holds

QΦT + ΦQ+N TΨ + ΨN ≺ 0. (21)

If the LMI of (21) is feasible, the control matrix is given by

K = NQ−1. (22)
Proof. Applying the condition of (16) to the system model

with the control law (20) applied gives

(Φ + ΨK)TP + P(Φ + ΨK) ≺ 0.

Left and right-multiplying this last condition by Q = P−1

gives
QΦT +QKTΨT + ΦQ+ ΨKQ ≺ 0.

Finally, setting N = KQ gives (21). �
Remark 2: In this last result, the controller matrices for

any node can, in general, vary. This is justified especially for
K2(1), i.e. for the central nodes p = 1, but for the following
nodes controller matrices can be assumed to be the same
for the rest of the system, i.e. K1(p) = K1, K3(p) =
K3, p = 1, 2, . . . , α, K2(p) = K2, p = 2, 3, . . . , α.
This could introduce some extra conservativeness of the
underlying LMI, but the dimensions of the matrices involved
would be smaller.

V. NUMERICAL EXAMPLE

Consider the active circuit built from elements with the fol-
lowing values C = 5× 10−4 [F ], L = 1× 10−2 [H], R1 =
100 [Ω], R2 = 200 [Ω], R = 50 [Ω] and the controlled
current sources with γ = 0.001, see (2). The length of the
each symmetric parts of ladder is set to α = 20. This model
is unstable since the real values of some eigenvalues of Φ are
positive and no solution for the LMI of Theorem 1 exists.
Note however that the instability is due to the presence of
the controlled sources as, if these are absent, then system is
passive and hence stable for all remaining parameter values.

The instability of the model can also be seen in simulation
results. Moreover, since all boundary conditions are assumed
to be zero, free evolution of the system is of no interest.
Instead, assume that during simulation a small input signal
E(0, t) = 1 [V ] appears at t = 0.1 [s] and lasts until t =
0.2 [s]. The evolution of the system in this case is shown in
Figure 7. It can be seen that the voltages across the capacitors
increase with time, long after the input signal has returned
to zero.

Fig. 7. Simulation results for the uncontrolled active circuit — UC(p, t)
over time and nodes

Application of Theorem 2 provides stabilizing controllers.
As an example, consider the controller matrix based on
Remark 2. In this case, solving the LMI (22) gives

Q∗
p = 10−8 ×

[
0.0060 −0.0047
−0.0047 0.1947

]
,

N2
2 (p) = 10−5 ×

[
0.0013 −0.1566

]
,

N2
3 (1) = 10−5 ×

[
−0.0027 0.1565

]
,

N3
3 (p) = 10−5 ×

[
−0.0026 0.1566

]
,

N1
1 (p) = 10−8 ×

[
0.9060 0.0344

]
,

p = 1, 2, . . . , α.
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Hence the controller matrices are

K2
2 (p) =

[
−423 −815

]
, K3

2 (1) =
[
184 808

]
,

K3
3 (p) =

[
206 809

]
, K1

1 (p) =
[
154 4

]
,

p = 1, 2, . . . , α.

To illustrate the behavior of the controlled circuit suppose
that, as in the previous case, an input signal E(0, t) =
1 [V ], t ∈< 0.1, 0.2 > [s] is applied. Figures 8 and 9 give
the resulting dynamics of state variables for the controlled
circuit.

Fig. 8. Simulation results for the controlled circuit — UC(p, t) over time
and nodes

Fig. 9. Simulation results for the controlled circuit — iL(p, t) over time
and nodes

Areas for possible future research include robust control,
time discretization and iterative learning control design. Ef-
fort could also be applied to extending these results for ladder
circuits to multi-mass systems assembled as a long chain of

The control action applied clearly results in stable be-
haviour.

VI. CONCLUSIONS

This paper has developed a 1D state-space model for
a specific class of spatially interconnected system, i.e., a
symmetrical active circuit. Based on Kirchhoff’s laws, the
2D dynamic model has been derived with one temporal and
one spatial (the node number) indeterminates. Next, taking
advantage of the system symmetry and applying the lifting
along the nodes approach, the equivalent 1D model has been
produced. This has led on to the development of stability
analysis/tests and stabilizing control law design, where the
required computations are LMI based.
subsystems, which have numerous engineering applications,
see, e.g., [7].
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