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Abstract— An optimal mass transport framework on the space
of Gaussian mixture models is presented. These models are
widely used in statistical inference. We treat such models as
discrete measures on the space of Gaussian densities. Our
method leads to a natural way to compare and interpolate
Gaussian mixture models, with low computational cost. The
method represents a first attempt to study optimal transport
problems for probability densities with specific structure that
can be suitably exploited.

I. INTRODUCTION

Optimal mass transport (OMT) has become in recent years
a very active research area with many deep theoretical
results as well as many applications including in physics,
economics, engineering, and biology [1], [2], [3], [4], [5],
[6], [7]. Employing powerful numerical computational al-
gorithms [8], [9], [10], [11], [12], [13], [14], OMT has
even found applications in data science [15], [16]. OMT
deals with the problem of transporting a mass from an
initial distribution to a final distribution in a mass preserving
manner that minimizes a given cost functional. When the
unit cost is the square of the Euclidean distance, the OMT
problem equips the space of probability densities with a
natural Riemannian structure [17], [18], [19]. This geometry
enables us to compare, interpolate and average probability
densities in a very natural way, which is in line with the
needs in a range of applications.

A mixture model is a probabilistic model describing prop-
erties of populations with subpopulations. Formally, it is a
mixture distribution with each component representing a sub-
population. Mixture models are widely used in statistics in
detecting subgroups, inferring properties of subpopulations,
and many other areas [20]. An important case of mixture
models is the Gaussian mixture model (GMM), which is
simply a weighted average of several Gaussian distributions.
Each Gaussian component stands for a subpopulation. The
Gaussian mixture model is commonly used in applications
due to its mathematical simplicity as well as efficient al-
gorithms in inference (e.g., Expectation Maximization algo-
rithm).

Computing mass transport on the entire manifold of prob-
ability densities may be computationally expensive, and so
we are motivated to study OMT on certain submanifolds
of probability densities. To retain the nice properties of
OMT, we seek an explicit OMT framework on Gaussian
mixture models. This study is partially motivated by certain
problems in data analysis. As is well-known, real-world data
are many times high dimensional and always have some
structure. Thus, they are not densely distributed in the high

dimensional space, meaning that they typically live in a low
dimensional submanifold. Moreover, many times, the data
are sparsely distributed among subgroups, and the difference
between data within a subgroup is much less significant
than that between subgroups. In such circumstances, mixture
models are quite natural, and so it is of interest to develop a
mathematical framework that respects such data structures.

II. BACKGROUND ON OMT

We now give a very brief overview of OMT theory. We only
cover materials that are related to the present work. We refer
the reader to [18] for more details.

Consider two measures µ0, µ1 on Rn with equal total mass.
Without loss of generality, we take µ0 and µ1 to be prob-
ability distributions. In the original formulation of OMT, a
transport map

T : Rn → Rn : x 7→ T (x)

is sought that specifies where mass µ0(dx) at x should be
transported so as to match the final distribution in the sense
that T]µ0 = µ1, i.e. µ1 is the “push-forward” of µ0 under
T , meaning

µ1(B) = µ0(T−1(B))

for every Borel set B in Rn. Moreover, the map should
achieve a minimum cost of transportation∫

Rn

c(x, T (x))µ0(dx).

Here, c(x, y) represents the transportation cost per unit mass
from point x to y. In this paper we focus on the case when
c(x, y) = ‖x − y‖2. To ensure finite cost, it is standard
to assume that µ0 and µ1 live in the space of probability
densities with finite second moments, denoted by P2(Rn).

The dependence of the transportation cost on T is highly
nonlinear and a minimum may not exist in general. This
fact complicated early analyses of the problem [18]. To
circumvent this difficulty, Kantorovich presented a relaxed
formulation in 1942. In this, instead of seeking a transport
map, one seeks a joint distribution Π(µ0, µ1) on Rn × Rn,
referred to as “coupling” of µ0 and µ1, so that the marginals
along the two coordinate directions coincide with µ0 and µ1,
respectively. Thus, in the Kantorovich formulation, we solve

inf
π∈Π(µ0,µ1)

∫
Rn×Rn

‖x− y‖2π(dxdy). (1)

For the case where µ0, µ1 are absolutely continuous with
corresponding densities ρ0 and ρ1, it is a standard result that
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OMT (1) has a unique solution [21], [18], [19]. Moreover,
the unique optimal transport T is the gradient of a convex
function φ, i.e.,

y = T (x) = ∇φ(x). (2)

Having the optimal mass transport map T , as in (2), the
optimal coupling is

π = (Id× T )]µ0,

where Id stands for the identity map. The square root of
the minimum of the cost defines a Riemannian metric on
P2(Rn), known as the Wasserstein metric W2 [22], [17],
[18], [19]. On this Riemannian-type manifold, the geodesic
curve connecting µ0 and µ1 is given by

µt = (Tt)]µ0, Tt(x) = (1− t)x+ tT (x), (3)

which is called displacement interpolation. It satisfies

W2(µs, µt) = (t− s)W2(µ0, µ1), 0 ≤ s < t ≤ 1. (4)

A. Gaussian marginal distributions

When both of the marginals µ0, µ1 are Gaussian distribu-
tions, the problem can be greatly simplified [23]. In fact, a
closed-form solution exists. Denote the mean and covariance
of µi, i = 0, 1 by mi and Σi, respectively. Let X,Y
be two Gaussian random vectors associated with µ0, µ1,
respectively. Then the cost in (1) becomes

E{‖X − Y ‖2} = E{‖X̃ − Ỹ ‖2}+ ‖m0 −m1‖2, (5)

where X̃ = X −m0, Ỹ = Y −m1 are zero mean versions
of X and Y . We minimize (5) over all the possible Gaussian
joint distributions between X and Y . This gives

min
S

{
‖m0 −m1‖2+trace(Σ0+Σ1 − 2S) |

[
Σ0 S
ST Σ1

]
≥0

}
(6)

with S = E{X̃Ỹ T }. The constraint is semidefinite con-
straint, so the above problem is a semidefinite programming
(SDP). It turns out that the minimum is achieved by the
unique minimizer in closed-form

S = Σ
1/2
0 (Σ

1/2
0 Σ1Σ

1/2
0 )1/2Σ

−1/2
0

with minimum value

W2(µ0, µ1)2 = ‖m0 −m1‖2 + trace(Σ0

+Σ1 − 2(Σ
1/2
0 Σ1Σ

1/2
0 )1/2).

The consequent displacement interpolation µt is a Gaussian
distribution with mean mt = (1−t)m0+tm1 and covariance

Σt = Σ
−1/2
0

(
(1− t)Σ0 + t(Σ

1/2
0 Σ1Σ

1/2
0 )1/2

)2

Σ
−1/2
0 .

(7)

The Wasserstein distance can be extended to singular Gaus-
sian distributions by replacing the inverse by the pseudoin-
verse †, which leads to

W2(µ0, µ1)2 = ‖m0 −m1‖2

+ trace(Σ0 + Σ1 − 2Σ
1/2
0 ((Σ

1/2
0 )†Σ1(Σ

1/2
0 )†)1/2Σ

1/2
0 ). (8)

In particular, when Σ0 = Σ1 = 0, we have

W2(µ0, µ1) = ‖m0 −m1‖,

implying that the Wasserstein space of Gaussian distribu-
tions, denoted by G(Rn), is an extension, at least formally,
of the Euclidean space Rn.

III. OMT FOR GAUSSIAN MIXTURE MODELS

A Gaussian mixture model is an important instance of mix-
ture models, which are commonly used to study properties
of populations with several subgroups. Mathematically, a
Gaussian mixture model is a probability density consisting
of several Gaussian components. Namely, it has the form

µ = p1ν1 + p2ν2 + · · ·+ pNνN ,

where each νk is a Gaussian distribution and p =
(p1, p2, . . . , pN )T is a probability vector. Here the finite
number N stands for the number of components of µ.
We denote the space of Gaussian mixture distributions by
M(Rn).

As we have already seen in Section II-A, the displacement
interpolation of two Gaussian distributions remains Gaussian.
This invariance, however, no longer holds for Gaussian
mixtures. Yet, the mixture models may contain some physical
or statistical features that we may want to retain. This gives
rise to the following question we would like to address. How
do we establish a geometry that inherits the nice properties
of OMT and in the meantime keeps the Gaussian mixture
structure?

Our approach relies on a different way of looking at Gaussian
mixture models. Instead of treating the given mixture as a
distribution on the Euclidean space Rn, we view it as a
discrete distribution on the Wasserstein space of Gaussian
distributions G(Rn). A Gaussian mixture distribution is
equivalent to a discrete measure, and therefore we can apply
OMT theory to such discrete measures. We will see next that
this strategy retains the Gaussian mixture structure.

Let µ0, µ1 be two Gaussian mixture models of the form

µi = p1
i ν

1
i + p2

i ν
2
i + · · ·+ pNi

i νNi
i , i = 0, 1.

Here N0 maybe different to N1. The distribution µi is equiv-
alent to a discrete measure pi with supports ν1

i , ν
2
i , . . . , ν

Ni
i

for each i = 0, 1. Our framework is built on the discrete
OMT problem

min
π∈Π(p0,p1)

∑
i,j

c(i, j)π(i, j) (9)

for these two discrete measures. Here Π(p0, p1) denote the
space of joint distributions between p0 and p1. The cost
c(i, j) is taken to be the square of the Wasserstein metric
on G(Rn), that is,

c(i, j) = W2(νi0, ν
j
1)2.
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By standard linear programming theory, the discrete OMT
problem (9) always has at least one solution. Let π∗ be a
minimizer, and define

d(µ0, µ1) =

√∑
i,j

c(i, j)π∗(i, j). (10)

Theorem 1: d(·, ·) defines a metric on M(Rn).

Proof: Cearly, d(µ0, µ1) ≥ 0 for any µ0, µ1 ∈M(Rn)
and d(µ0, µ1) = 0 if and only if µ0 = µ1. We next prove
the triangular inequality, namely,

d(µ0, µ1) + d(µ1, µ2) ≥ d(µ0, µ2)

for any µ0, µ1, µ2 ∈ M(Rn). Denote the probability vector
associated with µ0, µ1, µ2 by p0, p1, p2 respectively. The
Gaussian components of µi is denoted by νji . Let π01 (π12)
be the solution to (9) with marginals µ0, µ1 (µ1, µ2). Define
π02 by

π02(i, k) =
∑
j

π01(i, j)π12(j, k)

pj1
.

Clearly, π02 is a joint distribution between p0 and p2, namely,
π02 ∈ Π(p0, p2). It follows that

d(µ0, µ2) ≤
√∑

i,k

π02(i, k)W2(νi0, ν
k
2 )2

=

√√√√∑
i,j,k

π01(i, j)π12(j, k)

pj1
W2(νi0, ν

k
2 )2

≤

√√√√∑
i,j,k

π01(i, j)π12(j, k)

pj1
W2(νi0, ν

j
1)2

+

√√√√∑
i,j,k

π01(i, j)π12(j, k)

pj1
W2(νj1 , ν

k
2 )2

= d(µ0, µ1) + d(µ1, µ2).

In the above, the second inequality is due to the fact W2

is a metric, and the third inequality is an application of the
Minkowski inequality.

A. Geodesic

A geodesic on M(Rn) connecting µ0 and µ1 is given by

µt =
∑
i,j

π∗(i, j)νijt , (11)

where νijt is the displacement interpolation (see (7)) between
νi0 and νj1 .

Theorem 2:

d(µs, µt) = (t− s)d(µ0, µ1), 0 ≤ s < t ≤ 1. (12)

Proof: For any 0 ≤ s ≤ t ≤ 1, we have

d(µs, µt) ≤
√∑

i,j

π∗(i, j)W2(νijs , ν
ij
t )2

= (t− s)
√∑

i,j

π∗(i, j)W2(νi0, ν
j
1)2

= (t− s)d(µ0, µ1)

where we have used the property (4) of W2. It follows that

d(µ0, µs) + d(µs, µt) + d(µt, µ1) ≤ sd(µ0, µ1)

+(t− s)d(µ0, µ1) + (1− t)d(µ0, µ1) = d(µ0, µ1).

On the other hand, by Theorem 1, we have

d(µ0, µs) + d(µs, µt) + d(µt, µ1) ≥ d(µ0, µ1).

Combining these two, we obtain (12).

We remark that µt is a Gaussian mixture model since it is
a weighted average of the Gaussian distributions νijt . Even
though the solution to (9) is not unique in some instances,
it is unique for generic µ0, µ1 ∈M(Rn). Therefore, in most
real applications, we need not worry about the uniqueness.

B. Relation between d and W2

We first note that we have

d(µ0, µ1) ≥W2(µ0, µ1)

for any µ0, µ1 ∈M(Rn). Equality holds when both µ0 and
µ1 have only one Gaussian component. In general, d > W2.
This is due to the fact that the restriction to the submanifold
M(Rn) induces sub-optimality in the transport plan. Let
γ(t), 0 ≤ t ≤ 1 be any piecewise smooth curve on M(Rn)
connecting µ0 and µ1. Define the Wasserstein length of γ
by

LW (γ) = sup
0=t0<t1<···<ts=1

∑
k

W2(γtk , γtk+1
),

and natural length by

L(γ) = sup
0=t0<t1<···<ts=1

∑
k

d(γtk , γtk+1
).

Then LW (γ) ≤ L(γ).

Using the metric property of d we get

d(µ0, µ1) ≤ inf
γ
L(γ),

where the minimization is taken over all the piecewise
smooth curve on M(Rn) connecting µ0 and µ1. In view
of (12), we conclude

d(µ0, µ1) = inf
γ
L(γ) ≥ inf

γ
LW (γ).

Therefore, it is unclear whetherd is the restriction of W2 to
M(Rn).

In general, d is a very good approximation of W2 if the
variances of the Gaussian components are small compared
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with the differences between the means. This may lead to
an efficient algorithm to approximate Wasserstein distance
between two distributions with such properties. If we want to
compute the Wasserstein distance W2(µ0, µ1) between two
distributions µ0, µ1 ∈ M(Rn), a standard procedure is dis-
cretizing the densities first, and then solving a discrete OMT
problem. Depending upon the resolution of the discretization,
the second step may become very costly. In contrast, to
compute our new distance d(µ0, µ1), we need only to solve
(9). When the number of Gaussian components of µ0, µ1 are
small, this is extremely efficient.

IV. CONCLUSION

In this note, we have defined a new optimal mass transport
distance for Gaussian mixture models by restricting ourselves
to the submanifold of Gaussian mixture distributions. Con-
sequently, the geodesic interpolation utilizing this metric re-
mains on the submanifold of Gaussian mixture distributions.
On the numerical side, computing this distance between
two densities is equivalent to solving a linear programming
problem whose number of variables grows linearly as the
number of Gaussian components. This is a huge reduction
in computational cost compared with traditional OMT. Fi-
nally, when the covariances of the components are small,
our distance is a very good approximation of the standard
OMT distance. The extension to general mixture models
or structural models will be an interesting direction in the
future.
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