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Abstract— The guidance of mobile sensor-agents used in the
estimation of spatially distributed processes often neglects the
effects of the process itself on the health and reliability of
the sensor. When the spatially distributed process negatively
impacts the health status and functionality of the sensing
devices then the standard gradient-based sensor guidance will
accelerate the demise of the sensor and negatively impact
the performance of the estimator. A mixed policy that takes
into account the cumulative effects of the environment on the
health status of the sensing devices will provide a compromise
between sensor functionality and estimator performance. This
work considers a mixed policy where initially an information-
sensitive guidance policy is implemented. Using performance-
based criteria, the sensor guidance switches to an information-
neutral policy and when certain thresholds pertaining to the
life expectancy of the sensing devices are exceeded, then the
guidance policy switches to an information-averse policy. The
proposed mixed-guidance policy is demonstrated with a 2D
advection-diffusion partial differential equation.

Index Terms— Distributed parameter systems; distributed
estimation; mobile sensor network; sensor guidance policy.
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I. INTRODUCTION

While there has been a renewed interest in the use of
mobile sensors (sensors on mobile platforms) in the state
estimation of spatially distributed processes, little work con-
sidered the effects of the environment on the health status
of the sensing devices themselves. Representative works on
the use of mobile or scanning sensors for state reconstruction
and parameter identification of spatially distributed processes
are [1], [2], [3], [4], [5] and the references therein.

The use of mobile sensor network for source localization
or state reconstruction in toxic or hazardous or threat en-
vironments has been considered in [6], [7], [8], [9], [10],
[11], [12]. The meager work on the effects of the dynamic
process (spatiotemporally varying process) on the sensing
devices onboard mobile platforms (mobile sensor network)
has been essentially addressed by the author.

In the earlier work [13], [14], the guidance of the mobile
sensors was modified in order to account for the effects
of accumulated measurements, that is, the past histories of
the measured signals. It was assumed that a given sensor
can only tolerate an a priori defined level of accumulated
measurements. Measuring above the maximum level would
render the sensing device inoperable thus leading to a
dilemma: guide the sensor to spatial regions with “more” use-
ful information, thereby enhancing the learning properties of
the estimator while at the same time accelerating the demise
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of the sensor, or guide the sensor to spatial regions with
“less” useful information, thereby attenuating the learning
properties of the estimator while at the same time prolonging
the life expectancy and operability of the sensor. This neces-
sitated a modification to the standard guidance policy which
took on a simple modification: Employ the standard guidance
(information-sensitive) whenever the accumulated measure-
ments are below a user-defined threshold and then implement
an information-averse guidance the instance the accumulated
measurements are above the user-defined threshold and well
below the maximum tolerable limit.

Modifications to the guidance policy in [14] allowed for
collaborative estimation amongst the mobile sensors, in the
sense of coupling their guidance. To clarify the notion of
cooperative estimation, we point to two distinct types of
collaborative estimation:

• in the first one multiple mobile sensors implement
their own decentralized state estimate and through an
appropriate consensus protocol, they ensure that their
individual state estimates reach a consensus.

• in the second one, multiple mobile sensors collaborate
for a centralized state estimator. Their guidance can
be coupled to each other either because of stability
arguments, such as those presented in [15], [16] which
derived the guidance using Lyapunov stability argu-
ments, or because of the modifications presented in [13],
[14] which accounted for the collective accumulated
measurements of all sensors.

An aspect not considered earlier is the effects of a zero
sensor velocity as predicted by the proposed performance-
based guidance of the state estimator(s). In the case of a
gradient-based guidance, then the sensor velocity can be
zero whenever the spatial gradient of the state estimation
error at the current sensor position is zero. This implies
that the mobile sensor is traversing on a level-set of the
state estimation error, or marching along constant values
of the state estimator error. Using the modifications in [14]
that account for the accumulated measurements, the sensor
velocity can also be zero if the accumulated measurements
are momentarily equal to the threshold value as set in the
mixed guidance that switches from information-sensitive to
information-averse. In unsteady processes the above concerns
will not necessarily be an issue with a zero velocity as the
state estimation error will change in time and space, and the
accumulated measurements will keep increasing, thereby be-
coming greater than the threshold value. The problem comes
with the commanded velocities to the platforms carrying
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the sensors. Such platforms are not point masses and have
mass and inertia meaning they cannot stop on a moment’s
notice. Even when the commanded velocity is zero, they
must continue traversing in the spatial domain.

To remedy the above, a third policy is introduced, termed
information-neutral guidance policy and is only instituted
whenever the measurement error is (near a) constant for a
prolonged time or the accumulated measurements are within
a small range of the threshold amount set by the user. In this
case, the sensor is guided to move long the level set of the
state estimation error. Another possibility of the information
neutral policy is to have the sensor move along the direction
of positive gradient but with a significantly smaller velocity;
i.e. the sensor “slows down”.

Recapitulating, the information-sensitive guidance is im-
plemented whenever the state estimation error is not constant
for a prolonged time period or the accumulated measure-
ments are well-below the chosen threshold value. The sensor
motion in this case is normal to the instantaneous level
set of the state estimation error and the sensor platform
is guided towards the local maximum of the state esti-
mation error. When the accumulated measurements are in
the vicinity of the threshold value, then the sensor may
be guided towards the instantaneous level set of the state
estimation error. Switching between the above two policies
is allowed. When the accumulated measurements far exceed
the allowable threshold, then the information-averse guidance
is implemented and the sensor moves in the direction of
the local minimum of the state estimation error. Once the
information-averse guidance is activated, switching to either
of the other two is not allowed as the information-averse
policy signifies that the accumulated measurements have
exceeded the threshold and now the sensor policy tries to
maximize the life of the sensing device at the possible
expense of the performance of the state estimator.

The problem under consideration is presented in Section II
along with the sensor-parameterized state estimator. The
standard gradient-ascent guidance, first presented in [14] is
generalized and is now written explicitly in terms of the
gradient vector of the associated state estimation error and
presented in Section III. A motivation for the need of a mod-
ified guidance (mixed policy) is given in Section IV and the
proposed mixed-guidance policy is summarized in Section V.
Simulation studies of a 2D diffusion PDE with a single
interior sensor implementing the binary guidance policy
(information-sensitive to information averse) and the ternary
guidance policy (information-sensitive to information-neutral
to information-averse) is presented in Section VI. Conclu-
sions follow in Section VII.

II. PROBLEM DESCRIPTION

We consider advection-diffusion PDEs in 2 and 3 spatial
dimensions. For ease of exposure, this work will focus on the
2D case, but the presented results can easily be extended to
the 3D case. In particular, we consider the 2D diffusion PDE
with controls at the interior and the boundaries, depicted in

✲

✻

0

0

LX

LY

∂u

∂t
= ∆u+ bI(x, y)fI(t)

uy(t, x, LY ) = bT (x)fT (t) + cT (x)u(t, x, LY )

u(t, x, 0) = 0

u(t, 0, y) = 0 ux(t, LX , y) = bR(y)fR(t)

+cR(y)u(t, LX , y)

Fig. 1. 2D diffusion PDE with in-domain and boundary controls and
observations.

Figure 1 and described by
∂u(t,x,y)

∂t
= ∆u(t,x,y)+bI(x,y) fI(t)

u(0,x,y) = u0(x,y) in [0,LX ]× [0,LY ],

u(t,0,y) = 0, 0 ≤ y ≤ LY ,

u(t,x,0) = 0, 0 ≤ x ≤ LX ,

uy(t,x,LY ) = bT (x) fT (t)+ cT (x)u(t,x,LY ),

ux(t,LX ,y) = bR(y) fR(t)+ cR(y)u(t,LX ,y).

(1)

The functions bT (x) and bR(y) denote the spatial distributions
of the actuators at the top and right boundaries, respectively.
The control functions fT (t) and fR(t) denote the associated
control signals. Similarly for the spatial distribution of the
interior actuator bI(x,y) and its associated interior control
fI(t). Associated with the state equation (1) are the mea-
surements provided by both interior and boundary sensors

Z(t) =

[
ZI(t)

ZB(t)

]
=




∫
Ω

cI(t,ξξξ)u(t,ξξξ)dξξξ
∫

∂Ω
cB(t,ξξξ)u(t,ξξξ)dξξξ


 , (2)

where the 2D rectangular domain Ω = [0,LX ]× [0,LY ] with
ξξξ = (ξ1,ξ2) = (x,y) and the spatial functions cI(t,ξξξ), cB(t,ξξξ)
denote the sensor models. Mobile sensors, both in the interior
and on the boundaries are parameterized by the time varying
centroids ξξξI(t) and ξξξB(t), respectively. The sensor models (2)
are now given by

Z(t;ξξξ(t)) =

[
ZI(t;ξξξI(t))

ZB(t;ξξξB(t))

]

=




∫
Ω

cI(t,ξξξ;ξξξI(t))u(t,ξξξ)dξξξ
∫

∂Ω
cB(t,ξξξ;ξξξB(t))u(t,ξξξ)dξξξ


 .

(3)

For the case of a single interior sensor, a single boundary
sensor at the top and a single boundary sensor at the right
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boundary, (3) becomes

Z(t;ξξξ(t)) =




ZI(t;xI(t),yI(t))

ZT (t;xT (t))

ZR(t;yR(t))




=




∫ LX

0

∫ LY

0
cI(t,xI(t),yI(t))u(t,x,y)dydx

∫ LX

0
cT (t,xT (t))u(t,x,y)dx

∫ LY

0
cR(t,yR(t))u(t,x,y)dy




.

When the sensor models are taken to be the Dirac delta
functions, meaning that the sensors provide pointwise mea-
surements, then the above becomes

Z(t;ξξξ(t)) =




u(t;xI(t),yI(t))

u(t;xT (t),LY )

u(t;LX ,yR(t))


 . (4)

A. State estimator with mobile sensors

Following [14], the observer for (1), (4) takes the form of
a Luenberger observer with output injection terms parame-
terized by the centroids (xI(t),yI(t)) (for interior), xT (t) (for
top boundary) and yR(t) (for right boundary) and given by

∂û(t,x,y)
∂t

= ∆û(t,x,y)+bI(x,y) fI(t)

+λI(t,x,y)
(

u(t,xI(t),yI(t))− û(t,xI(t),yI(t))
)

û(0,x,y) = û0(x,y) in [0,LX ]× [0,LY ],

û(t,0,y) = 0, 0 ≤ y ≤ LY ,

û(t,x,0) = 0, 0 ≤ x ≤ LX ,

ûy(t,x,LY ) = bT (x) fT (t)+ cT (x)û(t,x,LY )

+λT (x;xT (t))
(

u(t,xT (t),LY )− û(t,xT (t),LY )
)
,

ûx(t,LX ,y) = bR(y) fR(t)+ cR(y)û(t,LX ,y)

+λR(y;yR(t))
(

u(t,LX ,yR(t))− û(t,LX ,yR(t))
)
.

(5)

In general, the sensor location-dependent kernels can be de-
rived using a Kalman filter design or a Luenberger observer
design. In the former, one must consider the solution to a
differential Riccati operator equation in order to extract the
filter kernels whereas for the latter, the filter kernels are
chosen to satisfy certain stability criteria. The structure of
this observer is that of the kernels λI(t,x,y), λT (x;xT (t)),
λR(y;yR(t)) be chosen equal to constant multiples of the
adjoints of the output operators associated with the output
functions (spatial delta functions) and thus

λT (x;xT (t)) = κT δ(x− xI(t)),

λR(y;yR(t)) = κR δ(y− yR(t)),

λI(x,y;xI(t),yI(t)) = κI δ(x− xI(t))δ(y− yI(t)),

(6)

where κT ,κR,κI are the user-defined positive gains defined in
[14], [16]. What essentially remains in the observer design is

the guidance of the mobile sensors, presented in Section III.
Central to the derivation of the sensor guidance is the state

estimation error e(t,x,y) = u(t,x,y)− û(t,x,y) governed by
∂e(t,x,y)

∂t
= ∆e(t,x,y)−λI(t,x,y)e(t,xI(t),yI(t))

e(0,x,y) = e0(x,y) in [0,LX ]× [0,LY ],

e(t,0,y) = 0, 0 ≤ y ≤ LY ,

e(t,x,0) = 0, 0 ≤ x ≤ LX ,

ey(t,x,LY ) =−λT (x;xT (t))e(t,xT (t),LY )

ex(t,LX ,y) =−λR(y;yR(t))e(t,LX ,yR(t)).

(7)

III. GUIDANCE OF MOBILE SENSORS

Incorporating the effects of the environment on the sensor
life and reliability results in a modified guidance as pre-
sented in [14]. The two types of guidance were information-
sensitive and information-averse, and utilized the accumu-
lated measurements as a means to alter the sensor guidance.
Following the relevant earlier works [13], [14], define the
following functions that provide information on the accumu-
lated measurements:

• the accumulated mass,
• the maximum mass and
• the threshold mass.
Definition 1: [14][accumulated mass] The accumulated

mass of the ith sensor is the total amount of the measured
process state by the sensor up to the current time t via

mi(t) =
∫ t

0
Zi(τ;ξξξi(τ))dτ, i = 1, . . . ,N. (8)

It provides information on the cumulative amount of the
spatial field (measurement) that the ith sensor has been
exposed to.

Definition 2: [14][maximum mass] The maximum mass
mmax

i is defined as the limit of the maximum exposure to
the process state beyond of which the ith sensor becomes
inoperative; i.e. it may be useless or saturated and, no longer
reading, or no longer transmitting readings, or, transmitting
incoherent readings.

A way to keep track of the instance the accumulated mass
mi(t) of the ith sensor exceeds its maximum mass mmax

i is
via the use of the ith sensor indicator function.

1mi(t) =

{
1 if mi(t)< mmax

i

0 if mi(t)≥ mmax
i

i = 1, . . . ,N. (9)

It allows the mobile sensors to come to a stop the instance the
accumulated mass exceeds the maximum mass. A retrieval
policy may be instituted to return the sensor to a base station
and to retrofit it with a healthy sensor.

Definition 3: [14][threshold mass] The threshold mass of
the ith sensor, denoted by mthresh

i ≤ mmax
i is a user-defined

threshold that the guidance policy employs to switch from
an information-sensitive to an information-averse motion in
order to prolong the life expectancy of the sensor.

A. Gradient ascent guidance based on accumulated exposure

A vehicle (mobile platform) carrying the ith onboard
sensor is assumed to be moving with a maximum speed υmax

i
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accumulated mass level guidance
mthresh

i −mi(t)> 0 information-sensitive
mthresh

i −mi(t)< 0 information-averse

TABLE I

CURRENT MEASUREMENT-DEPENDENT GUIDANCE.

in each direction.

A simple gradient-ascent guidance policy as presented in
[14] is given by

ξ̇ξξi(t) =




ẋi(t)

ẏi(t)

żi(t)


=




sign
(
ex(t,xi(t),yi(t))

)

sign
(
ey(t,xi(t),yi(t))

)

sign
(
ez(t,xi(t),yi(t))

)


 υmax

i .

A generalization of this, as first presented here, is expressed
in terms of the gradient vector and thus

ξ̇ξξi(t) = ~N(t,ξξξi(t))υmax
i , (10)

where the unit (outward) normal vector is given by

~N(t,ξξξi(t)) =
∇e(t,ξξξi(t))
|∇e(t,ξξξi(t))|

(11)

and which points in the direction of increasing e(t,ξξξ) and
is perpendicular to the isocontours (level sets) of e(·,ξξξ)−
constant = 0.

Using the modification (10) that generalizes the gradient
ascent guidance policy in [13], along with the modification
presented there that accounts for the effects of the accumu-
lated measurements, the guidance is now given by

ξ̇ξξi(t) = 1mi(t)sign
(
mthresh

i −mi(t)
)
~N(t,ξξξi(t))υmax

i . (12)

The term sign
(
mthresh

i −mi(t)
)

switches from an information-
sensitive to an information-averse guidance whenever the
accumulated mass mi(t) exceeds a used-defined threshold
mthresh

i ≤ mmax
i . This is also presented in Table I. The sign

function, written in terms of the shifted step function and
depicted in Figure 4(a), can be denoted as

sign
(
mthresh

i −mi(t)
)

= 1−2H(mi(t)−mthresh
i )

, σ(mi(t)).
The sensor speed can be modified to a time-varying and
measurement-dependent speed,

υi(t) = 1mi(t)

(
1−

mi(t)
mmax

i

)
υmax

i , i = 1, . . . ,N. (13)

where υmax
i is the maximum speed of the ith mobile sensor.

Using the above definition of the measurement-dependent
speed, the above guidance changes to

ξ̇ξξi(t) = σ(mi(t)) ~N(t,ξξξi(t)) υi(t), i = 1, . . . ,N. (14)

With regards to the single interior sensor, single top
boundary sensor and single right boundary sensor (i =
I,T,R), the modified guidance that differentiates between the
information-sensitive and the information-averse guidance is
given below. In the particular 2D case considered in Figure 1,
the guidance may be simplified using

∇e(t,ξξξi(t))
|∇e(t,ξξξi(t))|

−→

[
sign

(
ex(t,xi(t),yi(t))

)

sign
(
ey(t,xi(t),yi(t))

)
]
.

1
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Fig. 2. Spatial distribution of process state and a contour line (level-set)
of value e(x,y)−0.3247 = 0.

Thus, for the interior sensor it is
ẋI(t) = σ(mI(t)) sign

(
ex(t,xI(t),yI(t))

)
υI(t)

ẏI(t) = σ(mI(t))
)
sign

(
ey(t,xI(t),yI(t))

)
υI(t).

For the top boundary sensor in Figure 1, it is
ẋT (t) = σ(mT (t)) sign

(
ex(t,xT (t),LY )

)
υT (t),

and for the right boundary sensor, it is

ẏR(t) = σ(mR(t)) sign
(
ey(t,LX ,yR(t))

)
υR(t).

IV. MOTIVATION FOR INFORMATION-NEUTRAL

GUIDANCE POLICY

Consider the 2D case at the specific instance where the
spatial distribution of the distributed state error e(x,y) is
given by the 2D Gaussian distribution

e(x,y) = Ae
−

[
(x−xm)2

2σ2
x

+
(y−ym)2

2σ2
y

]

, A = 1,

for 0 ≤ x ≤ 1, 0 ≤ y ≤ 3. In the 1D case, there does
not exist a constant value of the spatially distributed state
for which a moving agent can have a nonzero velocity.
However, in higher dimensions, and in particular in the 2D
case considered here, there is a contour line (level-set) with
constant values of the state e(x,y) = h for which a moving
sensor can move along without coming to a stop. A mobile
sensor can move along the contour line given by the ellipse

(x− xm)
2

2σ2
x

+
(y− ym)

2

2σ2
y

= log

(
A
h

)
,

and measuring the same value of the state, i.e. e(x,y) = h.
While the same value of the process state will be measured,
thus adding no information to the state observer, a motion
along the level set is applicable to sensors on mobile plat-
forms (e.g. UAVs) that have inertia and cannot hover at a
fixed spatial point. However, in such a case, the sensor
will still be measuring a non-zero value thus adding to
the accumulated mass mi(t). In this case, the value of the
measurements will be exactly Z(t) = e(xi,yi) = h.

Combining the above, the sensor velocity (12) or (14) can
be zero whenever either of the two occur:

• the gradient ~N(t,ξξξi(t)) in (12) is zero,
• the accumulated mass mi(t) is equal to, or near, the

threshold mass mthresh
i .
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Fig. 3. Contour graph of the process state and the contour line (ellipse)
corresponding to a constant value of e(x,y)−0.3247 = 0.

accumulated mass level guidance
mthresh

i −mi(t)> ε information-sensitive
mi(t)−mthresh

i > ε information-averse
|mthresh

i −mi(t)| ≤ ε information-neutral

TABLE II

PROPOSED MEASUREMENT-DEPENDENT GUIDANCE.

The above demonstrates that a third guidance policy can
be instituted for the estimation of distributed processes in
hazardous environments, that of information-neutral guid-
ance. Following Figure 3, an information averse policy would
guide the sensor towards the center (yellow region) whereas
an information averse would guide the sensor away from
the center (blue regions). The third guidance would guide
the sensor along the level-set (red ellipse), or towards the
yellow region but with a reduced speed.

V. MIXED GUIDANCE POLICY

The binary decision for the guidance that switches
from an information-sensitive to an information-averse can
now be extended to a ternary one that switches from an
information-sensitive to an information-neutral and then to
an information-averse guidance. The graph of the switching
function σ(mi(t)) is depicted in Figure 4(b).

While one may resort to a level-set formalism [17], [18]
to obtain the mixed guidance policy, we can simply state
it below in its simpler form. The binary guidance policy
summarized in Table I and given in (11) is now replaced by
the ternary policy summarized in Table II and Figure 4(b).

VI. NUMERICAL STUDIES

Following the earlier work [13], we consider the 2D
diffusion equation defined over the spatial domain [0,LX ]×
[0,LY ] = [0,1]× [0,1] and given by

∂u
∂t

=
∂
∂x

(
α(x)

∂u
∂x

)
+

1
2

∂
∂y

(
α(y)

∂u
∂y

)

+5
∂u
∂x

−6
∂u
∂y

−10−2κu+b(x,y) fd(t)

σ
(m

(t
))

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

|

m
thresh

m(t)

(a) Binary policy.

σ
(m

(t
))

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

|

m
thresh + ε

|
m

thresh
− ε

m(t)

(b) Ternary policy.
Fig. 4. Current and proposed guidance policies.where

α(x) = 0.01
[
1+0.3sin(2πx)

(
sin3(x3)+ sin3(L− x)3)],

κ =
( π

LX

)2
+
( π

LY

)2
,

with initial condition u(0,x,y) = sin(πx)
(
2+ sin(2πy)

)
and

Dirichlet boundary conditions
u(t,0,y) = u(t,LX ,y) = 0, 0 < y < LY ,

u(t,x,0) = u(t,x,LY ) = 0, 0 < x < LX .

A finite element approximation scheme using 20 linear
splines in each direction, modified to account for the Dirich-
let boundary conditions, was used in order to arrive at a
finite dimensional approximation. The state estimator initial
condition was set to û(0,x,y) = 0 in Ω having Dirichlet
boundary conditions. The filter kernel was set equal to the
weighted adjoint of the output operator,

λ(x,y) = 63δ(x− xI(t))δ(y− yI(t)),

with (xI(t),yI(t)) denoting the coordinates (centroid) of the
interior mobile sensor. A single process measurement was
given by the interior mobile sensor

ZI(t) =
∫ LX

0

∫ LY

0
δ(x− xI(t))δ(y− yI(t))u(t,x,y)dydx.

In addition to the binary guidance presented in (14), the
proposed ternary guidance was used with the maximum
mass set to mmax = 5 and the threshold mass mthresh =
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Fig. 5. Evolution of the accumulated mass m(t).
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Fig. 6. Evolution of L2(Ω) error norm.

0.5mmax. The banded region where the third guidance policy
is implemented is taken to be ε = 0.2mmax. which implies
that whenever the mass m(t) is between 0.3mmax < m(t) <
0.7mmax, the neutral guidance policy is used.

Figure 5 depicts the evolution of the mass m(t). When
the binary policy is used, then the sensor switches from
information-sensitive to information averse at t = 1.24s and
exceeds the maximum mass at t = 5.52s revealing that
it stopped sensing. The ternary policy switches in to the
information-neutral policy at t = 0.68s and switches out at
t = 2.04s. The information averse policy is then implemented
and the sensor never reaches the maximum mass mmax = 5
revealing that it still functions beyond the simulation window
of [0,10]s. Similar behavior is observed in Figure 6 which
depicts the L2 norm of the state estimation error.

VII. CONCLUSIONS

We have considered a modification of the guidance policy
for mobile sensors that are deployed in spatial domains
and used for the state reconstruction of a spatiotemporally
varying field defined over the spatial domain. The guidance
policy takes into account the effects of the spatial process on
the health status of the sensing device. The negative effects
are monitored by the accumulated measurements of the
sensing devices. Whenever the accumulated measurements

exceed a limit the sensor is taken to be inoperative. The
modification to the guidance included a third component, that
of information-neutral and which changes the gradient ascent
or gradient-descent policy to a neutral third whenever the
accumulated mass is within a banded range of the threshold
mass. An example of the modified policy for a 2D diffusion
process was included to further demonstrate the possible
life extension of sensing devices when a mixed (ternary)
guidance policy is considered.
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[1] D. Uciński, “An optimal scanning sensor activation policy for pa-
rameter estimation of distributed systems,” in Model based parameter
estimation, ser. Contrib. Math. Comput. Sci. Springer, Heidelberg,
2013, vol. 4, pp. 89–124.

[2] J. Euler and O. Stryk, “Optimal cooperative control of mobile sensors
for dynamic process estimation,” in RSS213 Workshop on Robotics for
Environmental Monitoring, 2013, pp. 1–2.

[3] T. Ritter, J. Euler, S. Ulbrich, and O. von Stryk, “Adaptive observation
strategy for dispersion process estimation using cooperating mobile
sensors,” in Proc. of the 19th IFAC World Congress, vol. 47, no. 3,
Cape Town, South Africa, August 24-29 2014, pp. 5302 – 5308.

[4] J. Haugen, E. I. Grøtli, and L. Imsland, “State estimation of ice thick-
ness distribution using mobile sensors,” in Proc. of the International
Conf. on Control Applications, Oct. 3-5 2012, pp. 336–343.

[5] T. Egorova, N. A. Gatsonis, and M. A. Demetriou, “Estimation of
gaseous plume concentration with an unmanned aerial vehicle,” AIAA
J. of Guid., Contr, and Dynamics, vol. 39(6), pp. 1314–1324, 2016.

[6] W. Agassounon, W. Spears, R. Welsh, D. Zarzhitsky, and D. Spears,
“Toxic plume source localization in urban environments using col-
laborating robots,” in Proceedings of the 2009 IEEE Conference on
Technologies for Homeland Security, 11-12 May 2009, pp. 316–318.

[7] L. Shu, Y. Chen, Z. Sun, F. Tong, and m. mukherjee, “Detecting the
dangerous area of toxic gases with wireless sensor networks,” IEEE
Transactions on Emerging Topics in Computing, no. 99, pp. 1–1, 2017.

[8] P. Dames, M. Schwager, V. Kumar, and D. Rus, “A decentralized
control policy for adaptive information gathering in hazardous envi-
ronments,” in Proc. of the IEEE 51st Annual Conference on Decision
and Control, Maui, Hawaii, 10-13 Dec 2012, pp. 2807–2813.

[9] X. Lan and M. Schwager, “Learning a dynamical system model for a
spatiotemporal field using a mobile sensing robot,” in Proc. of the2017
American Control Conference, 24-26 May 2017, pp. 170–175.

[10] ——, “Rapidly exploring random cycles: Persistent estimation of
spatiotemporal fields with multiple sensing robots,” IEEE Transactions
on Robotics, vol. 32, no. 5, pp. 1230–1244, Oct 2016.

[11] J. Oyekan, D. Gu, and H. Hu, “Hazardous substance source seeking in
a diffusion based noisy environment,” in Proc. of the Int’l Conference
on Mechatronics and Automation, 5-8 Aug 2012, pp. 708–713.

[12] R. Sharma, D. M. Mount, and Y. Aloimonos, “Navigation in a
hazardous environment with distributed shelters,” in Proc. of the
IEEE International Conference on Systems, Man, and Cybernetics,
Charlottesville, VA, 13-16 Oct 1991, pp. 883–888, vol.2.

[13] M. A. Demetriou, “Gradient-based schemes of mobile sensor guidance
for estimating spatially distributed systems in hazardous environments
using value of information,” in Proc. of the IEEE 55th Conference on
Decision and Control, 12-14 Dec 2016, pp. 3954–3959.

[14] ——, “Information-based guidance of cooperative mobile agents in
hazardous environments: in-domain and boundary patrolling,” in Proc.
of the IEEE Conference on Decision and Control, 12-15 Dec 2017,
pp. 3095–3100.

[15] ——, “Guidance of mobile actuator-plus-sensor networks for im-
proved control and estimation of distributed parameter systems,” IEEE
Trans. on Automatic Control, vol. 55(7), pp. 1570–1584, 2010.

[16] ——, “Adaptive control of 2-D PDEs using mobile collocated actu-
ator/sensor pairs with augmented vehicle dynamics,” IEEE Trans. on
Automatic Control, vol. 57(12), pp. 2979–2993, 2012.

[17] J. A. Sethian, Level set methods and fast marching methods, 2nd ed.,
ser. Cambridge Monographs on Applied and Computational Mathe-
matics. Cambridge University Press, Cambridge, 1999, vol. 3.

[18] S. Osher and R. Fedkiw, Level set methods and dynamic implicit
surfaces, ser. Applied Mathematical Sciences. Springer-Verlag, New
York, 2003, vol. 153.

MTNS 2018, July 16-20, 2018
HKUST, Hong Kong

50


