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Abstract— We consider network routing under random link
failures with a desired final distribution. We provide a mathe-
matical formulation of a relaxed transport problem where the
final distribution only needs to be close to the desired one. The
problem is a maximum entropy problem for path distributions
with an extra terminal cost. We show that the unique solution
may be obtained solving a generalized Schrödinger system. An
iterative algorithm to compute the solution is provided. It
contracts the Hilbert metric with contraction ratio less than
1/2 leading to extremely fast convergence.

I. INTRODUCTION

A relief organization, operating in an area where a natu-
ral disaster has occurred or in a war zone, is facing the
following problem. At the initial time t = 0, there is a
distribution ν0(x) of available relief goods in sites x ∈ X .
Using the available road network, the goods must reach
certain other locations after N units of time according to
a desired distribution νN (x). Since the feasibility of the
various possible routes is uncertain, it is desirable that the
goods spread as much as the road network allows before
reaching the target nodes. A certain flexibility in the final
distribution can be afforded, thereby only requiring that it
is close rather than equal to νN (x). In this paper, build-
ing on our previous work [15], [16], which deal with the
case of a fixed terminal distribution, we provide a precise
mathematical formulation of the above relaxed problem. It
is a maximum entropy problem for probability distributions
on the feasible paths with a terminal cost. We study a
relaxed version of the usual Schrödinger bridge problem
without a hard constraint on the terminal marginal but with
an extra terminal cost. The solution is obtained by solving
iteratively a generalized Schrödinger system. Convergence
of the algorithm in a natural projective metric is established.
In [28], which is a sort of relaxation of [11], the problem
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of optimally steering a linear stochastic system with a
Wasserstein distance terminal cost was studied. In [18] (see
also [31]), a regularized transport problem with very general
boundary costs was considered and solved through iterative
Schrödinger-Fortet-Demin-Stephan-Sinkhorn-like algorithms
[43], [44], [26], [22], [45]. Although our dynamic problem
can be reduced to a static one of the form considered in [18]
using a well-known decomposition of relative entropy [24],
[27, (2),p.033301-4], employing a general prior measure
on the trajectories has some advantages. Indeed, the static
formulation solution does not yield immediate by-product
information on the new transition probabilities and on what
paths the optimal mass flow occurs and is therefore less
suited for many network routing applications. Moreover, we
want to allow for general prior measures not necessarily
of the Boltzmann’s type considered in the previous work.
Finally, we prove convergence of the iterative algorithm in
the Hilbert [8] rather than Thompson metric as it usually
provides the best contraction ratio.

We model the network through a directed graph and seek
to design the routing policy so that the distribution of the
commodity at some prescribed time horizon is close to a
desired one. The optimal feedback control suitably modifies
a prior transition mechanism. We also attempt to implicitly
obtain other desirable properties of the optimal policy by
suitably choosing a prior measure in a maximum entropy
problem for distributions on paths. Robustness with respect
to network failures, namely spreading of the mass as much as
the topology of the graph and the final distribution allow, is
accomplished by employing as prior transition the adjacency
matrix of the graph. For other notions of robustness concern-
ing networks see e.g. [1], [5], [4], [21], [42]. In particular, in
[4], [21], robustness has been defined through a fluctuation-
dissipation relation involving the entropy rate. This latter
notion captures relaxation of a process back to equilibrium
after a perturbation and has been used to study both financial
and biological networks [40], [41]. This paper is addressed
to transportation and data networks problems and does not
concern equilibrium or near equilibrium cases.

In the next section, we define the relaxed transport problem.
In Section III, we state the main result reducing the problem
to solving a generalized Schrödinger system. In Section IV,
we outline an iterative algorithm to compute the solution,
some extensions of the results and provide one numerical
example.
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II. RELAXED SCHRÖDINGER BRIDGES

Consider a directed, strongly connected aperiodic graph G =
(X , E) with vertex set X = {1, 2, . . . , n} and edge set E ⊆
X × X . We let time vary in T = {0, 1, . . . , N}, and let
FPN0 ⊆ XN+1 denote the family of length N , feasible paths
x = (x0, . . . , xN ), namely paths such that (xi, xi+1) ∈ E for
i = 0, 1, . . . , N − 1.

We seek a probability distribution P on FPN0 with pre-
scribed initial probability distribution ν0(·) and terminal
distribution close to νN (·), such that the resulting random
evolution is closest to a “prior” measure M on FPN0 in a
suitable sense. The prior law M is induced by the Markovian
evolution

µt+1(xt+1) =
∑
xt∈X

µt(xt)mxtxt+1
(t) (1)

with nonnegative distributions µt(·) over X , t ∈ T , and
weights mij(t) ≥ 0 for all indices i, j ∈ X and all times.
Moreover, to respect the topology of the graph, mij(t) = 0
for all t whenever (i, j) 6∈ E . Often, but not always, the
matrix

M(t) = [mij(t)]
n
i,j=1 (2)

does not depend on t. The rows of the transition matrix
M(t) do not necessarily sum up to one, so that the “total
transported mass” is not necessarily preserved. This occurs,
for instance, when M(t) simply encodes the topological
structure of the network with mij(t) being zero or one,
depending on whether a certain link exists at each time t. It
is also possible to take into account the length of the paths
leading to solutions which compromise between speading
the mass and transporting on shorter paths, see [15], [16].
The evolution (1) together with the measure µ0(·), which we
assume positive on X , i.e.,

µ0(x) > 0 for all x ∈ X , (3)

induces a measure M on FPN0 as follows. It assigns to a
path x = (x0, x1, . . . , xN ) ∈ FPN0 the value

M(x0, x1, . . . , xN ) = µ0(x0)mx0x1
(0) · · ·mxN−1xN (N−1),

(4)
and gives rise to a flow of one-time marginals

µt(xt) =
∑
x` 6=t

M(x0, x1, . . . , xN ), t ∈ T .

We seek a distribution which is closest to the prior M in
relative entropy where, for P and Q measures on XN+1,
the relative entropy (divergence, Kullback-Leibler index)
D(P‖Q) is

D(P‖Q):=

{∑
x∈XN+1 P (x) log P (x)

Q(x) , Supp(P ) ⊆ Supp(Q),

+∞, Supp(P ) 6⊆ Supp(Q),

Here, by definition, 0·log 0 = 0. Naturally, while the value of
D(P‖Q) may turn out negative due to miss-match of scaling

(in case Q = M is not a probability measure), the relative
entropy is always jointly convex. Moreover,

D(P‖Q)−
∑

x∈XN+1

P (x) +
∑

x∈XN+1

Q(x) ≥ 0.

Since for probability distributions we have∑
x∈XN+1

P (x) = 1,

minimizing the nonnegative quantity D(P‖Q)−
∑
x P (x) +∑

xQ(x) over a family of probability distributions P , even
when the prior Q has a different total mass, is equivalent
to minimizing over the same set D(P‖Q). We are now
ready to formalize the problem. Let ν0 and νN be two
probability distributions on X and let P(ν0) be the family of
all Markovian probability distributions on XN+1 of the form
(4) with initial marginal ν0. Rather than imposing the desired
final marginal νN as in the standard Schrödinger bridge
problem, we consider the following “relaxed problem”:

Problem 1:

minimize J(P ) := D(P‖M) + D(pN‖νN ) (5a)
over {P ∈ P(ν0)}. (5b)

Clearly, we can restrict the minimization to distributions in
PS(ν0), namely distributions in P(ν0) such that

Supp(pN ) ⊆ Supp(νN ). (6)

III. MAIN RESULT

We have the following characterization of the solution.

Theorem 1: Assume that the matrix

G := M(N − 1)M(N − 2) · · ·M(1)M(0) = (gij) (7)

has all positive elements gij . Suppose there exist two
functions ϕ and ϕ̂ mapping {0, 1, . . . , N} × X into the
nonnegative reals and satisfying the generalized Schrödinger
system

ϕ(t, i) =
∑
j

mij(t)ϕ(t+ 1, j), 0 ≤ t ≤ N − 1, (8a)

ϕ̂(t+ 1, j) =
∑
i

mij(t)ϕ̂(t, i), 0 ≤ t ≤ N − 1, (8b)

ϕ(0, i)ϕ̂(0, i) = ν0(i), (8c)

ϕ(N, j)2ϕ̂(N, j) = νN (j). (8d)

For 0 ≤ t ≤ N − 1 and (i, j) ∈ X × X , we define

π∗ij(t) := mij(t)
ϕ(t+ 1, j)

ϕ(t, i)
. (9)

which constitute a family of bona fide transition probabilities.
Then, the solution P∗ to Problem 1 is unique and given by
the Markovian distribution

P∗(x0, . . . , xN ) = ν0(x0)π∗x0x1
(0) · · ·π∗xN−1xN (N − 1).

(10)
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The proof can be found in [17, Section III]. Existence and
uniqueness for system (8) is established in [17, Section V]
by resorting to Hilbert’s projective metric.

IV. AN ALGORITHM CONTRACTING HILBERT’S METRIC
AND SOME EXTENSIONS

Let 1† = (1, 1, . . . , 1). System (8) suggests the following
iterative algorithm:

a. Set x = x(0) = 1;
b. Set xnext = C(x);
c. Iterate until you reach a fixed point x̄ = C(x̄)

(stopping criterion: |x̄− Cx̄| < 10−4);
d. Set ϕ̂(N) = x̄;
e. Use

ϕ(N, xN ) =

√
νN (xN )

ϕ̂(N, xN )
(11)

to compute ϕ(N) and then (8a) to compute ϕ(t)
for t = N − 1, N − 2, . . . , 1, 0;

f. Compute the optimal transition probabilities π∗ij(t)
according to (9);

g. The solution to Problem 1 is the time inhomo-
geneous Markovian distribution (10) with initial
marginal ν0 and transition probabilities π∗ij(t).

The assumption that the elements gij of the matrix G =
M(N − 1)M(N − 2) · · ·M(1)M(0) be all positive can be
relaxed, see [17, Section VI].

Our analysis and algorithm can be generalized to the cost
function

D(P‖M) + ηD(pN‖νN ) (12)

for any η ≥ 0. In this case, we only need change (8d) in the
Schrödinger system to

ϕ(N, j)
η+1
η ϕ̂(N, j) = νN (j)

and (11) to

ϕ(N, xN ) =

(
νN (xN )

ϕ̂(N, xN )

) η
η+1

in the algorithm. The convergence rate is strictly upper
bounded by η

η+1 . The parameter η measures the significance
of the penalty term D(pN‖νN ). When η goes to infinity,
we recover the traditional Schrödinger bridge. The upper
bound is 1 in this case. On the other hand, when η = 0,
the solution is trivial. It is the Markov process with kernel
M(t) (assuming that all M(t) are stochastic matrices) and
initial distribution ν0.

Example 1: Consider the graph in Figure 1. We seek to
transport masses from initial distribution ν1 = δ1 to target
distribution νN = 1/2δ6 + 1/2δ9. The step N is set to be
3 or 4. When N = 3, the evolution of mass distribution by
solving Problem 1 is given by[

1 0 0 0 0 0 0 0 0
0 0.5865 0.2067 0.2067 0 0 0 0 0
0 0 0 0 0.3798 0 0.2067 0.4135 0
0 0 0 0 0 0.3798 0 0 0.6202

]
,

Fig. 1: transport graph

where the four rows of the matrix show the mass distribution
at time step t = 0, 1, 2, 3 respectively. The prior law M
is taken to be the Rulle Bowen random walk [15]. The
mass spreads out before reaching nodes 6 and 9. Due to
the soft terminal constraint, the terminal distribution is not
equal to νN . When we allow for more steps N = 4, the
mass spreads even more before reassembling at nodes 6, 9,
as shown below,[

1 0 0 0 0 0 0 0 0
0 0.6941 0.2040 0.1020 0 0 0 0 0
0 0 0.1020 0.1020 0.4901 0 0.1020 0.2040 0
0 0 0 0 0 0.3881 0.1020 0.2040 0.3059
0 0 0 0 0 0.2862 0 0 0.7138

]
.

The terminal distribution is again not equal to νN . However,
if we increase the penalty on D(pN‖νN ), then the difference
between pN and νN becomes smaller, as can be seen below,
which is the distribution evolution when η = 10 in (12)[

1 0 0 0 0 0 0 0 0
0 0.7679 0.1547 0.0774 0 0 0 0 0
0 0 0.0774 0.0774 0.6132 0 0.0774 0.1547 0
0 0 0 0 0 0.5359 0.0774 0.1547 0.2321
0 0 0 0 0 0.4585 0 0 0.5415

]
.

V. FINAL COMMENTS

Since the work of Mikami, Thieullen, Leonard, Cuturi [36],
[37], [38], [32], [33], [20], a large number of papers have
appeared where Schrödinger bridge problems are viewed
as regularization of the important Optimal Mass Transport
(OMT) problem, see e.g., [7], [12], [13], [14], [34], [2],
[18]. This is, of course, interesting and extremely effective as
OMT is computationally challenging [3], [6]. Nevertheless,
one should not forget that Schrödinger bridge problems
have at least two other important motivations: The first is
Schrödinger’s original “hot gas experiment” model, namely
large deviations of the empirical distribution on paths [24].
The second is a maximum entropy principle in statistical
inference, namely choosing the a posterior distribution so as
to make the fewest number of assumptions about what is
beyond the available information. This inference method has
been noticeably developed over the years by Jaynes, Burg,
Dempster and Csiszár [29], [30], [9], [10], [23], [19]. It is
this last concept which largely inspired the original approach
taken in this paper and in [15], [16] although connections to
OMT were made there.
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de la mécanique quantique, Ann. Inst. H. Poincaré 2, 269, 1932.
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