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Abstract— In this work, we consider an event-triggered risk-
sensitive state estimation problem for hidden Markov models.
The event-triggered condition considered is general, which
involves the current measurement and past information. We
use the reference probability measure approach in solving this
problem. We derive the linear recursion in the unnormalized
information state conditioned on the available information
of the estimator, based on which risk-sensitive maximum a
posterior estimates can be evaluated. The results are extended
to the vector measurement scenario as well via a sequential
event-triggered approach.

I. PROBLEM FORMULATION

Firstly, we introduce a hidden Markov model (HMM) on
the probability space (Ω,F , P ). The hidden process con-
sidered is a discrete-time homogeneous, first-order Markov
chain X belonging to a finite set and the state space of X
can be identified with SX = {e1, e2, · · · , eN}, where ei is
the unit vector in RN with the ith element equal to 1. {FXk }
is the complete filtration generated by σ{X0, · · · , Xk}. Due
to the Markov property,

P (Xk+1 = ei|FXk ) = P (Xk+1 = ei|Xk).

Let A := (aij) ∈ RN×N , aij =: P (Xk+1 = ei|Xk = ej),
such that

∑N
i=1 aij = 1. Then

E[Xk+1|FXk ] = E[Xk+1|Xk] = AXk. (1)

The sensor measurement process is

yk = cXk + vk. (2)

For simplicity suppose y is scalar. The case of vector y is
discussed in Section II-C. vk ∈ R is white noise with a
strictly positive density function φ. cT = [c1, · · · , cN ]T ∈
RN is the observation vector. Similar to {FXk }, we have
{Fyk }.

Now we introduce the state estimation problem for the
risk-sensitive maximum a posterior (MAP) for HMMs [1],
[2]. Given X̂0, · · · , X̂k−1, define X̂k ∈ SX recursively as
the risk-sensitive MAP estimate of Xk such that

X̂k = arg min
ζ∈SX

E[exp(θΨ0,k(ζ))|Fyk ], k ≥ 0 (3)
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where θ > 0 is the risk-sensitive parameter and

Ψ0,k(ζ) = Ψ̂0,k−1 + µ(Xk, ζ), k ≥ 0

where Ψ̂0,k−1 =
∑k−1
i=0 µ(Xi, X̂i) for k ≥ 1 and Ψ̂0,k−1 = 0

for k = 0. Here

µ(u, v) =

{
0, if u = v
1, otherwise.

In this work, we consider the risk-sensitive remote state
estimation of finite-state HMMs based on event-triggered
measurements, which are sent to the remote estimator decid-
ed by an event-triggered process γk taking values in {0, 1}.
If γk = 1, an event is triggered and yk is sent by the sensor;
otherwise yk will not be sent. Define

Ik := {γ0, · · · , γk, γ0y0, γkyk}.

Here we consider a general event-triggered condition such
that we only need to assign a probability of idle for the
sensor when given yk and past information, i.e.

P (γk = 0|yk, Ik) = ρ(yk, Ik−1). (4)

The objective in this paper is to evaluate the risk-sensitive
MAP estimate of the hidden state X̂k conditioned on the
available information set Ik, i.e.,

X̂k = arg min
ζ∈SX

E[exp(θΨ0,k(ζ))|Ik], k ≥ 0 (5)

II. MAIN RESULTS

In this section, we use the reference probability approach
[3] to solve the considered risk-sensitive estimation problem.
To do this, we first introduce a new measure and link it with
the original measure, based on which the reformulated cost
index is obtained and the recursive estimation problem is
further solved.

A. Change of Measure

Now we introduce a new measure P̄ , under which we still
have

Ē[Xk+1|FXk ] = Ē[Xk+1|Xk] = AXk

P̄ (γk = 0|yk, Ik) = ρ(yk, Ik−1),
(6)

but {yk},k ≥ 0 is a sequence of independent and identically
distributed (i.i.d.) random variable with density function φ
satisfying

P̄ (yk ≤ t|FXk ∪ F
y
k−1 ∪ F

γ
k−1) = P̄ (yk ≤ t)

=

∫ t

−∞
φ(yk)dyk.

(7)

23rd International Symposium on Mathematical Theory of Networks and Systems
Hong Kong University of Science and Technology, Hong Kong, July 16-20, 2018

172



Write Gk := FXk ∪F
y
k ∪F

γ
k . Then the new measure P̄ is

defined by the restriction of the Radon-Nikodym derivative
over Gk:

dP

dP̄

∣∣∣∣
Gk

=

l=k∏
l=0

φ(yk − cXk)

φ(yk)
. (8)

Using a version of Bayes’ Theorem, we have

E[exp(θΨ0,k(ζ))|Ik] =
Ē[Λ̄k exp(θΨ0,k(ζ))|Ik]

Ē[Λ̄k|Ik]
. (9)

Thus we can modify the problem in (5) as follows:

X̂k = arg min
ζ∈SX

Ē[Λ̄k exp(θΨ0,k(ζ))|Ik], k ≥ 0. (10)

B. Recursive Estimates

Definition 1: Define αk = [αk(e1), · · · , αk(eN )]T as the
unnormalized information state such that for r ∈ N1:N

αk(er) = Ē[Λ̄k exp(θΨ̂0,k−1)〈Xk, er〉|Ik], k ≥ 0. (11)
Notice that αk is not an unnormalized conditional distribu-
tion [3], [4] since it includes not only the actual state of the
system but also part of the risk-sensitive cost.

Theorem 1: For the HMM (1)-(2) and the event-triggered
condition (4), the information state αk has the following
linear recursion:

αk = diag{bk}Adiag{dk−1}αk−1 (12)

where dk−1 =
[
exp(θµ(ei, X̂k−1))

]
i∈N1:N

and

bk =
1

P̄ (γk = 0|Ik−1)

[∫
R
φ(yk − ci)ρ(yk, Ik−1)dyk

]
i∈N1:N

if γk = 0 and bk =
[
φ(yk−ci)
φ(yk)

]
i∈N1:N

if γk = 1.
Theorem 2: The event-triggered risk-sensitive MAP esti-

mation problem (5) is solved by

X̂k = ei∗ , i
∗ = arg max

i∈N1:N

αk(ei), k ∈ N. (13)
Example 1: Consider a general deterministic event-

trigged condition [5]

γk =

{
0, if |yk − βk| ≤ δk
1, otherwise. (14)

where δk ≥ 0 is a fixed threshold and βk is a known
parameter based on the information set Ik−1 to the remote
estimator. In this case, if γk = 0,∫

R
φ(yk − ci)ρ(yk, Ik−1)dyk =

∫ −δk+βk

δk+βk

φ(yk − ci)dyk

for i ∈ N1:N . Combining Theorem 1 and 2, one can evaluate
the risk-sensitive MAP estimate for event-triggered condition
(14).

Example 2: Consider a general stochastic event-trigged
condition [6]

γk =

{
0, if τk ≤ exp(− 1

2wk(yk − ξk)2)
1, otherwise. (15)

Assume the measurement noise v(k) is Gaussian with zero-
mean and covariance σ > 0 such that φ(·) is the N(0,

√
σ)

density. In this case, if γk = 0,∫
R
φ(yk − ci)ρ(yk, Ik−1)dyk = ηk exp

(
− (ci − ξk)2

2(σ + wk−1)

)
for i ∈ N1:N , where ηk is unrelated to ci and ξk. Again,
combining Theorems 1 and 2, one can evaluate the risk-
sensitive MAP estimate for event-triggered condition (15).

C. Extension to the Vector Measurement Scenario

Suppose the sensor measurement process where yk is m-
dimensional with elements

y1k = c1Xk + v1k

y2k = c2Xk + v2k
...

ymk = cmXk + vmk , k ≥ 0.

(16)

Remark 1: If elements of the measurement noise v(k)
are correlated, in the case where v(k) is Gaussian we can
use a nonsingular linear transformation approach to get the
uncorrelated measurement noise.

We use a sequential event-triggered approach to sequen-
tially decide whether yik is to be transmitted to the remote
estimator. Likewise, let γik ∈ {0, 1} be the transmission
decision variable of yik and define

Iik := {γ10 , γ20 · · · , γik, γ10y10 , γ20y20 , · · · , γikyik}, 1 ≤ i ≤ m.

Then transmission probability functions for each element of
yk can be assigned as

P i(γik = 0|yik, Ii−1k ) = ρi(yik, Ii−1k ). (17)

Theorem 3: For the HMM (1) and (16) and the event-
triggered condition (17), the information state αk has the
following linear recursion:

αk = diag{bk}Adiag{dk−1}αk−1 (18)

where dk−1 =
[
exp(θµ(ei, X̂k−1))

]
i∈N1:N

and

bk =

[
m∏
l=1

(
1− γlk

P̄ (γlk = 0|Il−1k )

∫
R
φl(ylk − cli)ρl(ylk, Il−1k )dylk

+ γlk
φl(ylk − cli)
φl(ylk)

)]
i∈N1:N

(19)

and the convention I0k = Imk−1 is assumed.
Likewise, the risk-sensitive MAP estimate X̂k can be

evaluated using Theorem 2.
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III. CONCLUSIONS

We have investigated a risk-sensitive state estimation prob-
lem for finite-state HMMs based on event-triggered mea-
surements in this work. By utilizing the change of measure
approach, the linear recursive unnormalized information state
under a general event-triggering condition and the result for
risk-sensitive MAP estimates are obtained. The correspond-
ing results for the vector measurement scenario are also
achieved. The state variable considered here is discrete (finite
values), and an interesting extension is to consider systems
with continuous-range states. We speculate that the change
of measure approach and the provided frame in this work
will be also helpful to study this case.
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