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Abstract— In this paper we present a new variant of the
McEliece cryptosystem. In contrast to the typical approach,
where block codes are used, we propose the use of a convo-
lutional encoder to be part of the public key. In this setting
the message is a sequence of messages instead of a single block
message and the errors are added randomly throughout the
sequence. We point out several advantages of such an approach
and indicate interesting lines for future research.

Index Terms— McEliece cryptosystem, convolutional codes,
information set decoding.
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I. INTRODUCTION

There has been a recent interest in post-quantum cryp-
tography due to the fact that the appearance of quantum
computers would break most of the public key cryptosystems
(PKC) used in practice, more concretely, all cryptosystems
based on factorization and discrete logarithm problems.
Thus, there is currently a great interest in working on the
McEliece cryptosystem as it is one of the most promising
PKC able to resist attacks based on quantum computers,
since it relies on the hardness of decoding a linear block
code without any visible structure.

Another important advantage of the McEliece cryptosys-
tem is its fast encryption and decryption procedures which
require a significantly lower number of operations with
respect to alternative solutions (like RSA). However, the
original McEliece cryptosystem has two main disadvantages:
low encryption rate and large key size, both due to the Goppa
codes it is based on.

Motivated by this, there have been several attempts to
substitute the underlying Goppa codes by other classes of
block codes, using Generalized Reed-Solomon (GRS), Low-
DensityParity-Check(LDPC), Quasi-Cyclic, among others.
Unfortunately, these alternatives have exposed the system
to security threats. A new idea was recently presented in
[1] where Baldi et al. proposed to replace the permutation
matrix used in the original McEliece scheme by a more
general transformation. This new variant aimed at opening
the possibility of trying to use again different classes of
codes (e.g.GRS) that were unsuccessfully proposed earlier.
Although new variants of this idea are currently under
investigation, the proposed system in [1] was broken in [2].

Another new and interesting scheme was proposed in
[3] where the secret code is a convolutional code. One
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of the most appealing feature of this system is the fact
that its secret generator matrix contains large parts which
are generated completely at random and has no algebraic
structure. However, the scheme consider fixed block lengths
(with the block Toeplitz structure typical of convolutional
codes) and therefore had many similarities with block codes.
This allowed the adaptation of existing attacks and the
scheme was broken, see [4].

In this paper, we investigate further the possibility of
using convolutional codes instead of block codes in order
to overcome the above mentioned disadvantages. In the
proposed scheme, the message is not a block vector but
a stream of vectors sent in a sequential fashion. Again
the security relies in the difficulty of decoding a general
convolutional code (specially hard when the degree of the
code is large). Our construction uses large parts of randomly
generated matrices in order to mask the secret key. Moreover,
the truncated sliding matrix of the encoders are not full
row rank (i.e., is not a generator matrix of a block code).
Therefore, the existing attacks to this type of PKC do not
seem to be effective. We outline the idea of this novel scheme
and provide preliminaries comments on its security.

II. PRELIMINARIES

This section contains the background needed for the
development of our results. We introduce the McEliece PKC
and the type of convolutional codes considered in this work.

Let F = Fq be a finite field of size q, F((D)) be the field
of formal Laurent polynomials with coefficients in F, F(D)
be the field of rational polynomials with coefficients in F
and F[D] be the ring of polynomials with coefficients in F.

A. The original McEliece cryptosystem

Let G ∈ Fk×n be an encoder of an [n, k]-block code
C with distance d capable of correcting t = bd−12 c errors,
S ∈ Fk×k an invertible matrix and P ∈ Fn×n a permutation
matrix. In the classical McEliece cryptosystem G, S and P
are kept secret and

G′ = SGP (1)

and t are public. Bob publishes G′ and Alice encrypts the
cleartext message u ∈ Fk to produce v = uG′, chooses a
random error e ∈ Fn with weight wt(e) ≤ t and sends the
ciphertext

y = v + e = uG′ + e = uSGP + e.

The generator matrix G is selected in such a way that
allows an easy decoding so that when Bob receives the vector
y, multiplies from the right by the inverse of P and recovers

23rd International Symposium on Mathematical Theory of Networks and Systems
Hong Kong University of Science and Technology, Hong Kong, July 16-20, 2018

323



uS by decoding (uS)G + eP−1 as wt(eP−1) ≤ t. Finally,
Bob multiplies on the right uS by the matrix S−1 to obtain
u.

It is important to remark that the security of this cryp-
tosystem lies in the difficulty of decoding a random encoder,
known to be an NP hard problem. Hence, G needs to admit
an easy decoding algorithm but G′ has to look as random as
possible.

B. Convolutional Codes

Unlike linear block codes, there exist several approaches
defining convolutional codes. In this subsection we
introduce convolutional codes using the generator matrix
approach. As opposed to block codes, convolutional codes
process a continuous sequence of data instead of blocks
of fixed vectors. If we introduce a variable D, usually
called the delay operator, to indicate the time instant
in which each information arrived or each codeword
was transmitted, then we can represent the sequence
message (u0,u1, · · · ),ui ∈ Fk as a polynomial sequence
u(D) = u0 + u1D + · · · ∈ Fk((D)). In this representation
the encoding process of convolutional codes, and therefore
the notion of convolutional code, can be presented as follows.

A convolutional code C (see definition [5, Definition 2.3])
of rate k/n is an F((D))-subspace of F((D))n of dimension
k given by a rational encoder matrix

G(D) =

m∑
i=0

GiD
i ∈ F(D)k×n,

i.e.

C = Im F((D))G(D) =
{
u(D)G(D) : u(D) ∈ Fk((D))

}
,

where m is called the memory of G(D).

III. A NEW VARIANT OF THE MCELIECE PKC BASED ON
CONVOLUTIONAL ENCODERS

Here we propose a new scheme of the McEliece PKC
where a secret encoder of a block code is masked by
polynomial matrices yielding a convolutional polynomial
encoder, which constitutes the public key. More precisely,
the ingredients of the keys are the following:
• G ∈ Fk×n an encoder of a (n.k)-block code with error-

correcting capability t and that admits an easy decoding
algorithm.

• T (D,D−1) =

1∑
i=−1

TiD
i ∈ F((D))

n×n invertible (in

F((D))) such that the positions of the nonzero columns
of Ti form a partition of n and each row of Ti has at
most one nonzero element, for i = −1, 0, 1.

• P (D,D−1) := T−1(D,D−1) =

1∑
i=−1

PiD
i ∈

F((D))
n×n.

• S(D) =

ν∑
i=1

SiD
i ∈ F((D))

k×k with S1 invertible.

• e(D) =
∑
i≥0

eiD
i ∈ F[D]

n a random error vector

satisfying
wt((ei, ei+1, ei+2)) ≤ t (2)

for all i ≥ 0 and ej = 0 for j < 0.
Matrices T (D,D−1) with more than three coefficients can

be also used in this schema. However, in this preliminary
work, and for the sake of simplicity, we restrict ourself to
this simple case. Before introducing the scheme we present
the following straightforward result.

Lemma 3.1: Let T (D,D−1) and e(D) be as described
above. Then, all the coefficients of e(D)T (D,D−1) have
weight less than or equal to t.

Remark 3.1: Observe that as S1 is invertible one can
retrieve

u(D) = u0 + u1D + · · ·+ u`D
`

knowing u(D)S(D) =:
∑ν+`
i=ν wiD

i.
The scheme works as follows:

Secret key: {S(D), G, P (D,D−1)}.

Public key: {G′(D) := S(D)GP (D,D−1), t}.

Encryption: Alice selects an error vector e(D) and en-
crypts the message

u(D) = u0 + u1D + u2D
2 + · · ·+ u`D

` ∈ F[D]
k

as
y(D) = u(D)G′(D) + e(D), (3)

to finally send the ciphertext y(D) =
∑
i≥0 yiDi.

Decryption: Bob multiplies (3) from the right by the
matrix T (D,D−1) to obtain

u(D)S(D)G + e(D)T (D,D−1). (4)

By Lemma 3.1 each coefficient of e(D)T (D,D−1) has
weight ≤ t and therefore each of the coefficient of
u(D)S(D) =

∑ν+`
i=ν wiD

i can be decoded. By Remark (3.1)
Bob can recover the message u(D) from u(D)S(D).

Remark 3.2: We have

G′(D) = G′0 + G′1D + · · ·+ G′1+νD
1+ν ,

where G′0 = S1GP−1, G′1 = S2GP−1 + S1GP0 and so on.
So it is easy to see that the term G′0 is the most vulnerable to
structural attacks. In order to protect the secret key G against
this type of attacks, we choose P−1 with many null rows.
This is achieved if we choose T as described above as we
will show in the next section. Note that, in this way, we also
guarantee that G′0 is not full row rank, therefore we are also
being protected against information set decoding attacks.

It is important to note that it is not difficult to show that
the scheme presented can be implemented sequentially, i.e.,
we can encrypt the data ui’s as it enters into the encoder
G′ and decrypt the sequence of yi’s as they arrive, without
waiting for the end of the transmission.
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IV. COMMENTS ON THE SECURITY

One general observation about the security of the proposed
cryptosystem is about the way the public key is generated.
As opposed to previous constructions of the variants of the
McEliece PKC, G′(D) = S(D)GP (D,D−1) is constructed
using large parts randomly generated, and this makes struc-
ture attacks more difficult. Effectively, the coefficients of
S(D) are totally randomly generated except for the S1 that
is required to be invertible. Therefore, we have(

qk
2
)ν−1 k−1∏

i=0

(qk − qi)

possible S(D) matrices. The block code with generator
matrix G can be any code with a fast decoding algorithm. For
example a GRS, Goppa or LDPC code. Moreover, the set of
admissible P ((D,D−1)) is considerably large, and therefore
also the selection of P ((D,D−1)) introduces additional
randomness into the system.

We construct T as T = Π∆ Γ, where Γ is a permutation
matrix, ∆ is a diagonal matrix and Π is invertible matrix,
satisfying certain conditions that imply that T ((D,D−1))
is invertible, the positions of the nonzero columns of Ti
form a partition of n and each row of Ti has at most one
nonzero element, for i = −1, 0, 1. More specifically, Γ is
any permutation matrix of order n,

∆ =



1/D
. . .

1/D
1

. . .
1

D
. . .

D


︸ ︷︷ ︸

d1

︸ ︷︷ ︸
d2

︸ ︷︷ ︸
d3

where d1 = d3 and d1 + d2 + d3 = n, and

Π =

 Id1 U1 2 U1 3

U2 1 Id2 U2 3

U3 1 U3 2 Id3


where each Ui j has at most one nonzero entry in each row,
for i < j. If i > j, the matrices Ui j should be chosen so
that Π is invertible and each row has at most one nonzero
element. The simplest case is when U2 1, U3 1 and U3 2 are
null matrices. So, there are n! possible Γ matrices, bn/2c
possible ∆ matrices and (q − 1)(dj + 1)di possible Ui j
matrices, when i < j.

Remark 4.1: Since

P (D,D−1) = T−1(D,D−1) = Γ−1∆−1Π−1

it easily follows that the positions of the nonzero rows of Pi
form a partition of n. Hence if T1 have just a few nonzero
columns then P−1 will have many null rows, which enable

us to protect the secret key G in the initial term G′0 against
structural attacks.

A. Plaintext recovery

These attacks try to decode a random linear code without
requiring any knowledge of the secret key. However, trying
to decode directly a convolutional code, for example with
the Viterbi decoding algorithm, seems very difficult.

The plaintext recovery type of attack is typically per-
formed using information set decoding algorithms (ISD).
Information set decoding tries to solve the following NP-
hard problem: Given a random looking generator matrix
G′ ∈ Fk×n of a linear code C ′ and a vector y = uG′ + e,
recover u. Roughly speaking, the problem is that of decoding
a random linear code. The first step of any ISD algorithm
is to find a size-k index set I ⊂ {1, 2, . . . , n} such that the
sub-matrix of G′ with the columns indexed by I forms an
invertible matrix of order k, or, equivalently, the sub-matrix
of the parity check matrix H ′ (associated with G′) with the
columns indexed by I? = {1, 2, . . . , n}\I forms an invertible
matrix of order n−k. The set I is called an Information Set.

The second step depends of the algorithm we are using, but
the basic idea is to guess the I-indexed part eI of the error
vector e according to a predefined method (that depends on
each specific algorithm) and try to obtain the whole e from
these assumptions. For example:

• In Prange algorithm (also called plain ISD algorithm)
we guess that wt(eI) = 0.

• In Lee-Brickell algorithm we guess that wt(eI) = p,
for a fixed value p.

• In Stern algorithm we separate I in two sets I1 and
I2 with approximately the same size and guess that
wt(eI1) = p/2, wt(eI2) = p/2, and so wt(eI) = p.
Stern considers also other restritions in the I?-indexed
part of e, namely the first ` coordinates of eI? have
weight zero.

Next, we analyse how these ideas could be adapted to our
context.

The ciphertext is generated as y(D) = u(D)G′(D)+e(D)
or equivalently,

[
y0 y1 · · · yl · · · yl+ν+µ

]
which

is equal to the multiplication of[
u0 u1 · · · u`

]
with


G′0 G′1 · · · G′ν+µ
G′0 G′1 · · · G′ν+µ

. . .
. . .

. . .

G′0 G′1 · · · G′ν+µ
. . .

. . .
. . .

G′0 G′1 · · · G′ν+µ



and adding the error vector[
e0 e1 · · · e`+ν+µ

]
.

Hence, one may try to attack the first vectors yi’s, i.e.,
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decode the following interval of data

[
u0 u1 · · · us

]


G′0 G′1 · · · G′s
G′0 · · · G′s−1

. . .
...
G′0

+ (5)

︸ ︷︷ ︸
=:G′truc(s)

+
[
e0 e1 · · · es

]
=
[
y0 y1 · · · ys

]
,

using, for instance, the Stern algorithm or some of its more
improved versions. However, note that this is not an standard
decoding problem as G′truc(s) is still not a full row rank
matrix and one should adapt somehow the ISD techniques
to the context of this work.

V. CONCLUSIONS

In this work we have proposed a new variant of the
McEliece cryptosystem using convolutional codes instead of
block codes. This scheme is in many aspects different from
the previous proposed variants as the message is not a block
vector anymore but a stream sequence of vectors. Trying to
adapt the existing attacks seems not straightforward. A more
detail analysis of the key size and the security of this system
needs to the done.
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