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Abstract— This paper presents an ongoing research on the
infinite horizon Linear Quadratic Gaussian (LQG for short)
control problem for stochastic port-Hamiltonian systems on
infinite-dimensional spaces with bounded input, output and
noise operators. An adapted version of the separation principle
is stated for this specific class of systems. Under suitable
conditions, the LQG controller is shown to preserve the
stochastic port-Hamiltonian structure. Finally, we propose some
perspectives and open tracks to follow. The theory is illustrated
on an example of vibrating string subject to a Hilbert space
valued random forcing.
Index Terms— Infinite-dimensional system - Port-Hamiltonian
system - Stochastic partial differential equation - LQG method
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I. INTRODUCTION

In the deterministic setting, an extensive literature can be
found on the Linear Quadratic optimal control problem on
infinite-dimensional spaces in [CZ95] and the references
therein.
The stochastic Linear Quadratic control problem was first
addressed by Wonham [Won68a] and [Won68b] and Kushner
[Kus62] by means of a dynamic programming approach. For
an overview of the existing literature in finite dimension,
interested readers are referred e.g. to [FR75].
A generalization to infinite-dimensional spaces was under-
taken by Ichikawa in [Ich79], where the author studies the
stochastic LQ control with bounded control, observation
and noise operators and its related Riccati equation by
using a semigroup framework and a dynamic programming
approach. In other works, a study of the LQG control
problem and a generalization of the separation principle can
be found in [Cur78] and [CI77], which is illustrated by
several examples and applications.
It is worth noticing that the literature cited so far deals either
with general infinite-dimensional systems or very specific
classes of systems. To the best of our knowledge, no attempt
has already been made to develop an adapted approach
in order to study and solve the LQG control problem for
stochastic port-Hamiltonian systems on infinite-dimensional
spaces (SPHSs).
The class of nonlinear time-varying SPHSs was introduced in
[SF13] on finite-dimensional spaces as the stochastic exten-
sion of [MvdS92]. Recently, the authors generalized SPHSs
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on infinite-dimensional spaces with boundary control and
observation operators in [LW17] as the stochastic extension
of deterministic linear infinite-dimensional first order port-
Hamiltonian systems, see [LZM05].
Here, the semigroup approach is preferred to the variational
one. Since the early work of Ito in the mid-1940s, the
theory of stochastic differential systems (SDEs) has been the
object of a considerable attention. Background material for
the study of stochastic partial differential equations (SPDEs)
using a semigroup approach and the theory of stochastic
integration with respect to Hilbert space valued stochastic
processes can be found in [Cho14], [DPZ08] and [Liu05].
For space reasons, a recall will not be given here.
The present paper reports on current research to address
and solve the LQG control problem for stochastic port-
Hamiltonian systems (SPHSs) with bounded control, obser-
vation and noise operators. Moreover, conditions are derived
to preserve the stochastic port-Hamiltonian structure of the
LQG controller and thus the closed-loop dynamic can be
interpreted as the interconnection of infinite-dimensional
stochastic port-Hamiltonian systems. Here the system noise
is assumed to be an infinite-dimensional Gaussian white
noise process whereas the measurement noise is of finite
dimension. This paper is meant to be a first attempt to address
the LQG control problem for infinite-dimensional SPHSs in
a stochastic context.
The content of the paper is as follows. In Section II the
class of stochastic port-Hamiltonian systems is presented
as in [LW17] except for the fact that here the control
and observation operators are bounded. The LQG control
problem is introduced for this specific class of systems.
Section III is devoted to the solution of the LQG control
problem by using the separation principle. In Section IV a
LQG controller preserving the stochastic port-Hamiltonian
framework is proposed. Eventually, the results outlined in
this paper are illustrated by an example of an inhomegenous
vibrating string subject to a space and time dependent
Gaussian white noise process.

II. STOCHASTIC PORT-HAMILTONIAN SYSTEMS

Let (Ω,F ,F,P) be a filtered probability space, wherein the
filtration F := (Ft)t≥0 satisfies the usual assumptions of
completeness and right continuity. Let us consider a Hilbert
space Z and let us denote by L2

F([0,∞)×Ω;Rm) the Hilbert
space of Rm-valued and F-adapted stochastic processes with
norm ‖ · ‖2

L2
F([0,∞)×Ω;Rm)

:=
∫∞

0
E ‖ · ‖2Rmds. In this paper

the class of first order stochastic port-Hamiltonian systems
driven by a Z-valued white noise Gaussian process (η(t))t≥0
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with bounded control and noise operators is considered. It
is governed by the following stochastic partial differential
(SPDE)

∂X

∂t
(ζ, t) = P1

∂

∂ζ
(H(ζ)X(ζ, t)) + P0H(ζ)X(ζ, t)

+Bu(t) + (Hη(t))(ζ),

(1)

where P1 = PT
1 is invertible, P0 = −PT

0 and H(ζ) ∈
L∞([a, b];Rn×n) is symmetric and m1I ≤ H(ζ) ≤ m2I
for a.e. ζ ∈ [a, b] for some constants m1,m2 > 0. The state
space X := L2([a, b];Rn) is endowed with the inner product
〈·, ·〉X = 〈·,H·〉L2 . Here, the input u ∈ L2

F([0,∞)×Ω;Rm)
and the state process X(ζ, t) can be regarded as a random
variable X(ζ, t) : Ω→ Rn, ζ ∈ [a, b] and t ≥ 0.
The SPDE (1) is completed by a set of boundary port
variables given by the flow f∂(t) and the effort e∂(t). These
port variables are usually expressed as the combination of the
co-energy variables (HX(t)) restricted to the extremities of
[a, b] in the following way:(

f∂(t)
e∂(t)

)
= R0

(
(HX(t))(b)
(HX(t))(a)

)
, (2)

where R0 ∈ R2n×2n is defined as R0 := 1√
2

(
P1 −P1

0 0

)
.

The SPDE (1) can be rewritten under the Ito form :

dX(t) = (AX(t) +Bu(t))dt+Hdw(t),

X(0) = X0

(3)

in which (w(t))t≥0 stands for a Z-valued Wiener process
with incremental covariance Q and intensity H ∈ L(Z,X ).
Here the operator Q ∈ L(Z) is assumed to be symmetric and
nonnegative and to satisfy Tr[Q] <∞, where Tr denotes the
trace operator of Q. The operator A is defined by

Ax := P1
d

dζ
(Hx) + P0Hx (4)

on the domain
D(A) =

{
x ∈ X : Hx ∈ H1([a, b];Rn),

WB

[
f∂
e∂

]
= 0

}
,

(5)

where WB is a n×2n full rank real matrix. The observation
model is taken to be

dZ(t) = B∗HX(t)dt+ Fdv(t), (6)

where v(t) is a Rm-valued Wiener process with invertible
incremental covariance matrix V and intensity F ∈ Rm×m.
Note that the observation process has to be finite dimensional
since the covariance matrix of the measurement noise is
assumed to be invertible and of trace class. Nonetheless, this
is not restrictive from a physical point of view since one can
only hope to have a (possibly large) finite number of ob-
servations. The initial condition X0 and the noise processes
w(t) and v(t) are assumed to be mutually independent.
The next result ensures the generation of a C0-semigroup by
the operator A.
Theorem 1: [Vil07, Theorem 2.13] Consider the operator A
with domain D(A) given by (4) and (5). Assume that WB is

a full rank matrix of size n×2n. Then A is the infinitesimal
generator of a contraction C0-semigroup (T (t))t≥0 on X
if and only if WB satisfies WBΣWT

B ≥ 0, where Σ =[
0 I
I 0

]
∈ R2n×2n. Furthermore, A is the infinitesimal

generator of a unitary group if and only if WBΣWT
B = 0.

In this paper we will therefore develop the theory under the
following conditions.
Assumption 1: 1) The matrix WB is assumed to be full

rank and to satisfy WBΣWT
B ≥ 0.

2) The stochastic convolution product
∫ t

0
T (t −

s)Hdw(s) is assumed to be well-defined, i.e.∫ t

0
Tr[T (s)HQH∗T ∗(s)]ds <∞ for all t ≥ 0.

For further details on the theory of stochastic integration in
the Ito sense, the reader is referred to [DPZ08], [MPBL14]
or [Cho14].
Following [DPZ08], for a given control u ∈ L2

F([0,∞) ×
Ω;Rm) and an initial condition X0 ∈ L2

F0
(Ω;X ), the SDE

(3) has a unique mild solution given by

X(t) = T (t)X0 +

∫ t

0

T (t− s)Bu(s)ds

+

∫ t

0

T (t− s)Hdw(s).

(7)

For further details on stochastic port-Hamiltonian systems,
we refer to [LW17].
The LQG control problem is to minimize the functional

J(u) = lim
T→∞

E
∫ T

0

‖B∗HX(t)‖2Rm + ‖R̃1/2u(t)‖2Rmdt,

(8)
over the admissible controls u ∈ L2

F([0,∞) × Ω;Rm) and
subject to (3) and (6). The weight matrix R̃ is assumed to
be symmetric and positive definite and HBB∗H is assumed
to be positive semi-definite.

III. SEPARATION PRINCIPLE

The aim of this section is to state the separation principle
for SPHSs on the basis of [CI77] and [CP78]. For an
admissible class of controls, it is known that the LQG control
problem (8) under (3) and (6) can be divided into two
separate problems, namely the estimation of the state process
(X(t))t≥0 based on the observation process (Z(t))t≥0 and
the LQ control problem with complete observation on the
estimated state process (X̂(t))t≥0. Notice that in [BV75],
a different approach is considered and necessary and suf-
ficient conditions are derived for optimality with a convex
differentiable cost functional.
Definition 1: 1) (A,B) is said to be exponentially (exp.)

stabilizable if there exists an operator K ∈ L(X ,Rm)
such that A − BK generates an exp. stable C0-
semigroup (TA−BK(t))t≥0.

2) (B∗H, A) is said to be exponentially (exp.) detectable
if there exists an operator L ∈ L(Rm,X ) such that
A − LB∗H generates an exp. stable C0-semigroup
(TA−LB∗H(t))t≥0.

The solution of the optimal feedback control problem is
known to be closely related to the Riccati equation, which
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involves the adjoint operator of A. The computation of this
adjoint can be found in [Vil07] for N order port-Hamiltonian
systems. For the sake of self-containedness, we present a
proof for the specific first order case (N = 1).
Proposition 1: Let WB be a n×2n full rank matrix written
as WB =

[
W1 W2

]
. Let us consider the operator A with

its associated domain D(A) given by (4) and (5). Then, its
adjoint A∗ is given by

A∗x = −P1
d

dζ
(Hx)− P0(Hx) = −JHx (9)

for all x in

D(A∗) =
{
x ∈ L2([a, b];Rn) : Hx ∈ H1([a, b];Rn),[
−(I +MT ) (I −MT )

]( f∂
e∂

)
= 0

}
,

(10)

where I denotes the identity matrix and M = (W1 +
W2)−1(W1 −W2).

Proof: The adjoint of an unbounded operator is given
by

A∗y = z ⇔ ∀x ∈ D(A), 〈Ax, y〉X = 〈x, z〉X (11)

with domain defined by:

y ∈ D(A∗)⇔ ∃z ∈ X s.t. ∀x ∈ D(A), 〈Ax, y〉X = 〈x, z〉X

On one hand, by integrating by parts, we have that

〈Ax, y〉X = [yT (ζ)H(ζ)P1H(ζ)x(ζ)]ba

−
∫ b

a

d

dζ
(yT (ζ)H(ζ))P1(Hx)(ζ)dζ

+

∫ b

a

yT (ζ)H(ζ)P0(Hx)(ζ)dζ,

(12)

and, on the other hand,

〈x,A∗y〉X =

∫ b

a

(A∗y(ζ))TH(ζ)x(ζ)dζ. (13)

Since the equality between (12) and (13) must hold, we
deduce that

A∗y = −P0Hy − P1
d

dζ
(Hy) (14)

and
[yT (ζ)H(ζ)P1H(ζ)x(ζ)]ba = 0. (15)

The relation (15) can be rewritten as([
0 P1

−P1 0

] [
(Hy)(a)
(Hy)(b)

])T [
(Hx)(b)
(Hx)(a)

]
= 0. (16)

The boundary term (16) can be rewritten as([
0 P1

−P1 0

] [
(Hy)(a)
(Hy)(b)

])T [
(Hx)(b)
(Hx)(a)

]
(17)

=

(
(Hy)(b)
(Hy)(a)

)T

RT
0 ΣR0

(
(Hx)(b)
(Hx)(a)

)
(18)

From [JZ12, Lemma 7.3.2], these holds

ker
[
f∂
e∂

]
= Ran

[
I −M
I +M

]
, (19)

where M = (W1 + W2)−1(W1 − W2) with WB =[
W1 W2

]
. Using (19) in (18) and defining

(
f∂,y
e∂,y

)
=

R0

[
(Hy)(a)
(Hy)(b)

]
we deduce that(

f∂,y
e∂,y

)T

Σ

(
I −M
−(I +M)

)
l = 0, (20)

for all l ∈ Rn, which is equivalent to(
f∂,y
e∂,y

)
∈ Ker

(
−(I +MT ) I −MT

)
. (21)

In the following, under suitable stabilizability and detectabil-
ity assumptions (see Theorem 2 below), we derive the
filter and control Riccati equations for SPHSs by using the
expression of the adjoint operator A∗ given by (9) and (10).
The best estimate X̂(t) of the state X(t) is governed by the
Kalman filter equation, i.e.

dX̂(t) = (AX̂(t) +Bu(t))dt+ L(dZ(t)−B∗HX̂(t)dt)

X̂(0) = E[X0],
(22)

where L := PfHB(FV F ∗)−1 in which Pf is the stabilizing
self-adjoint nonnegative solution of the filter operator Riccati
equation (FORE) given by

[JHPf − PfJH − PfHB(FV F ∗)−1B∗HPf

+HQH∗]x = 0,
(23)

for all x ∈ D(A∗) with Pf (D(A∗)) ⊂ D(A). In the case of
complete observation of the state process, it is known that the
optimal control can be written in feedback form by solving
the control operator Riccati equation (CORE)

[−JHPc+PcJH+HBB∗H−PcBR̃
−1B∗Pc]x = 0, (24)

for all x ∈ D(A) with Pc(D(A)) ⊂ D(A∗). Then, the
optimal control u∗(t) is given in terms of the optimal state
X∗(t) by

u∗(t) = −R̃−1B∗PcX
∗(t). (25)

Observe that the Riccati equation (24) is deterministic and
thus the relation between the optimal control and the state
process, which are random, is completely deterministic.
In the case of partially observed state process given by (6),
by following [CI77], the cost is minimized over a certain
class of admissible controls Uad ⊂ L2

F([0,∞) × Ω;Rm),
which roughly consists in controls depending only on the
observation in order to avoid the dependence on the control
law. The admissible set is chosen as
Uad = {u : u(t) is adapted to σ(Z(s) : 0 ≤ s ≤ t)

and to σ(γ(s) : 0 ≤ s ≤ t)} ,
(26)

where (γ(t))t≥0 is the innovation process given by

dγ(t) = dZ(t)−B∗HX̂(t)dt (27)
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with incremental covariance matrix FV F ∗.

By adapting [CI77, Theorem 2.3] to our framework, we can
now state the separation principle for SPHSs.
Theorem 2: (Separation principle)
Suppose that (A,B) and (A,HQ1/2) are exp. stabilizable
and that (B∗H, A) is exp. detectable. Consider the problem
of minimizing J(u) given by (8) subject to (3) and (6) over
the class of admissible controls Uad. Then there exists a
unique optimal control u∗ ∈ Uad given by

u∗(t) = −R̃−1B∗PcX̂(t), (28)

X̂∗(t) = S(t)X̂0 +

∫ t

0

S(t− s)PfHB(FV F ∗)−1dZ(s),

(29)

where (S(t))t≥0 is the C0-semigroup generated by (A −
BR̃−1B∗Pc − PfHB(FV F ∗)−1B∗H), Pc and Pf are the
solutions of the CORE (24) and the FORE (23), respectively.
The minimizing problem of J(u) given by (8) subject to (3)
and (6) is equivalent to the problem of minimizing

Ĵ(u) = lim
T→∞

E
∫ T

0

‖B∗HX̂(s)‖2Rm + ‖R̃1/2u(s)‖2Rmds.

(30)
subject to (22).

Sketch of the proof: Since (A,B) and (A,HQ1/2) are
exp. stabilizable and (B∗H, A) is exp. detectable, (24) and
(23) have unique exp. stabilizing self-adjoint nonnegative
solutions Pc and Pf , respectively, see [CP78]. The optimal
control is characterized among the class of σ(γ(s) : 0 ≤ s ≤
t)-adapted control. By using a similar argument as in [CI77],
we deduce (28) and (29). The relation (29) entails that X̂∗(t)
is σ(Z(s) : 0 ≤ s ≤ t)-adapted and then, u∗(t) ∈ Uad.

IV. SPHS STRUCTURE PRESERVING FOR THE LQG
CONTROLLER

An important problem is the preservation of the SPHS
structure in the control process. From the filter equation
(22), one can observe that the dynamics of the LQG
controller consists of a prediction (AX(t) +Bu(t))dt and a
correction (dZ(t)−B∗HX̂(t)dt). Since the prediction term
conserves the stochastic port-Hamiltonian framework, this
leads to the natural question whether the LQG controller
could conserve the port-Hamiltonian framework.

The LQG controller is given by

uc(t) = −KX̂(t) := −R̃−1B∗PcX̂(t),

dX̂(t) = AX̂(t)dt+ PfHB(FV F ∗)−1dγ(t) +Buc(t)dt

where L := PfHB(FV F ∗)−1. Since the output of the
controlled system is the input of the controller, the LQG
controller is described by

uc(t) = −KX̂(t) := −R̃−1B∗PcX̂(t), (31)

dX̂(t) = [A− LB∗H−BK] X̂(t)dt+ LdZ(t), (32)

X̂(0) = E [X(0)] , (33)

Zc(t) = KX̂(t). (34)

Now we add a bounded dissipation term to the general SDE
(3) describing SPHSs and we define the class of stochastic
dissipative port-Hamiltonian systems.
Definition 2: Stochastic dissipative port-Hamiltonian sys-
tems are governed by the following SPDE

∂X

∂t
(ζ, t) = (J −R)H(ζ)X(ζ, t) +Bu(t) + (Hη(t))(ζ),

(35)

where
J x := P1

d

dζ
x+ P0x (36)

and R = R∗ ∈ L(X ) is a positive semi-definite self-adjoint
operator representing the energy dissipation along the spatial
domain.
In Theorem 3, a generalization of [WHGM14, Proposition
5] to infinite-dimensional spaces is proposed. Under suitable
conditions, the LQG controller is proved to describe a
stochastic dissipative port-Hamiltonian system w.r.t. Defini-
tion 2.
Theorem 3: If we assume that the following link

R̃ = FV F ∗ (37)

holds and if the Riccati operators satisfy the relation

HPfx = PcH−1x (38)

for all x ∈ D(A) ∩ D(A∗), then the LQG controller
given by (31)-(34) describes a dissipative stochastic port-
Hamiltonian system. Moreover, the covariance operator Q
and the weighing operator HBB∗H are related by

HBB∗Hx = [HHQH∗H+ (JH+HJ )Pc

−Pc(JH+H−1JH2)]x,
(39)

for all x ∈ D(A) ∩D(A∗).
Proof: In order to describe a dissipative stochastic port-

Hamiltonian system, the energy dissipation operator

R := PfHB(FV F ∗)−1B∗ +BR̃−1B∗PcH−1 (40)

must be self-adjoint and positive semi-definite. On one hand
since H is a self-adjoint operator,

R∗ = B(FV F ∗)−1B∗HPf +H−1PcB(R̃∗)−1B∗.

Hence, R is self-adjoint if the following conditions hold:

B(FV F ∗)−1B∗HPfx = BR̃−1B∗PcH−1x,

H−1PcB(R̃∗)−1B∗x = PfHB(FV F ∗)−1B∗x,

for all x ∈ D(A) ∩ D(A∗). They will be satisfied if
R̃ = FV F ∗ and HPf = PcH−1. On the other hand, the
LQG controller ensures the exp. stability of the closed-loop
system. Therefore, all the eigenvalues of the closed-loop
system must be in the left of the complex plane and thus
the operator R has to be positive semi-definite. Otherwise,
there would exist a vector d 6= 0 s.t. 〈d,Rd〉X = λ‖d‖2 < 0
for which the dynamic of the closed-loop system would not
be exp. stable. By using (37) and (38) in the FORE, we get
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that

[JPcH−1 −H−1PcH−1JH −H−1PcBR̃
−1B∗PcH−1

+HQH∗]x = 0,

for x ∈ D(A) ∩D(A∗). Factorizing H−1 on both sides and
since H−1 is injective, it follows that

[HJPc − PcH−1JH2 − PcBR̃B
∗Pc +HHQH∗H]x = 0.

(41)
Subtracting (41) from the CORE given by

[−JHPc+PcJH−PcBR̃
−1B∗Pc+HBB∗H]x = 0, (42)

we deduce (39), which completes the proof.
Under the conditions (37)-(39) of Theorem 3, the LQG con-
troller conserves the stochastic port-Hamiltonian structure
and the LQG control problem should be interpreted as the
feedback interconnection of infinite-dimensional stochastic
port-Hamiltonian systems.
Remark 1: 1) The relation (38) breaks the separation

principle so that the optimal control and the mean-
square estimation problem cannot be considered sep-
arately anymore. In other words, the focus is either
on the control or on the filter, but not on both. If the
optimal control problem is considered first, then the
weighing operators are chosen first and the covariance
operators are set w.r.t. (37) and (39), and vice versa.
In this case, the covariance operators do not have a
statistical meaning anymore. There are considered as
control parameters as the weighing operators in the
cost.

2) Since the port-Hamiltonian systems are interconnected
in a power conserving way, i.e. u(t) = −Zc(t)
and uc(t) = Z(t), the feedback interconnection of
a stochastic port-Hamiltonian system with a LQG
controller is still a stochastic port-Hamiltonian system.
Therefore, the structure is conserved in the closed-loop
dynamics.

3) The domains of A and A∗ are equal when A generates
a unitary group, i.e. when WBΣWT

B = 0. Indeed, this
condition is equivalent to M being unitary by [LZM05,
Lemma A.1] and since S = 1

2 (W1 +W2) is invertible,
we deduce that

Ker
[
−(I +MT ) (I −MT )

]
= Ker

[
−MT (I +M I −M)

]
= Ker (−MTS−1WB) = Ker WB ,

which entails that the kernel of WB is equal to the
kernel of

[
−(I +MT ) (I −MT )

]
. The vibrating

string or the Timoshenko beam fall within the port-
Hamiltonian framework, see [JZ12, Chapter 7]. More-
over, consider that the left extremity is clamped and
that the right extremity is let free for control purpose.
One can easily check that for these examples, we have
the generation of a unitary group and then D(A) =
D(A∗). However, these examples are at most strongly

stabilizable. Therefore, to satisfy the exponential stabi-
lizability assumptions, dissipative elements would need
to be added to get the exp. stabilizability of the system.

Usually, the Riccati equations (23) and (24) cannot be
exactly solved for practical problems. Therefore, a suitable
finite-dimensional approximation of (3) must be found. In
recent years, efficient numerical methods, including Newton-
Kleinman algorithms, were proposed in [MN10] and [GM96]
to solve the Riccati equation for finite-dimensional approxi-
mations.
Eventually, the authors would like to point out that the
method of spectral factorization by symmetric extraction was
considered and investigated in [CW92]. It leads to a general
methodology which allows to conserve the distributed nature
of the system to derive the optimal feedback law. The
latter method would probably require to solve challenging
numerical problems for the class of SPHSs, due to the lack
of knowledge on the eigenvalues and eigenfunctions for port-
Hamiltonian systems.

V. EXAMPLE: STOCHASTIC VIBRATING STRING

Let us consider the case of an inhomogeneous vibrating
string in random media governed by the following SPDE

∂2w

∂t2
(ζ, t) =

1

ρ(ζ)

∂

∂ζ

(
T (ζ)

∂w

∂ζ
(ζ, t)

)
+

1

ρ(ζ)
η(ζ, t).

The boundary conditions are set as follows:
∂w

∂t
(a, t) = 0, T (b)

∂w

∂ζ
(b, t) + k

∂w

∂t
(b, t) = 0, (43)

where k ≥ 0 and the initial condition w(ζ, 0) = w0(ζ)
is a real-valued random variable with a given Gaussian
distribution. For further details on the deterministic case,
interested readers are referred to [JZ12]. In addition the string
is assumed to be actuated at the right extremity by distributed
forces b(ζ)u(t) on [b− ε, b] where

b(ζ) =

{
1, ζ ∈ [b− ε, b],
0, elsewhere .

Moreover, the observation process is given by the noisy mean
value velocity, i.e.

y(t) =

∫ t

0

∫ b

a

b(ζ)
∂w

∂s
(ζ, s)dζds+ σv(t), (44)

where σ ∈ R and v(t) is a real scalar valued Wiener process
with unit incremental variance. The SPDE falls within the
class of SPHSs and can be written as (3) by setting

P1 =

[
0 1
1 0

]
and H(ζ) =

[
1
ρ(ζ)

0

0 T (ζ)

]
. (45)

The control operator B : R→ X is given by

Bu :=

(
b(ζ)

0

)
u(t) (46)

and the noise intensity is given by H =

[
1
0

]
. The boundary

conditions yield a boundary matrix WB given by

WB =
1√
2

[
1 k k 1
0 −1 1 0

]
, (47)
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which satisfies WBΣWT
B ≥ 0 and is full rank. Thus, A

generates a contraction C0-semigroup.
The functional cost is taken as

J(u) = lim
T→∞

E
∫ T

0

∫ b

a

b2(ζ)

(
∂w

∂t
(ζ, t)

)2

dζ + u2(t)dt.

(48)
From [JZ12, Example 9.2.1], the system is exp. stable with
small stability margin whenever the damping parameter k
is small. The purpose would be to reach better stability
margins at least for dominant modes of the system. Under
the assumptions of Theorem 2, the LQG optimal control law
is given by (28) and (29).

VI. CONCLUSION

In this paper a first investigation of the LQG control problem
for infinite-dimensional stochastic port-Hamiltonian systems
is presented. Based on [CI77] and [BV75], the separation
principle is stated for SPHSs. Besides, the adjoint operator
with domain of the dynamic operator is made explicit for
port-Hamiltonian systems.
In particular, the preservation of the infinite-dimensional
stochastic port-Hamiltonian framework in the LQG controller
dynamic is investigated. As an infinite-dimensional extension
of [WHGM14], it is proved that, under some conditions, the
LQG control problem can be interpreted as the intercon-
nection of infinite-dimensional stochastic port-Hamiltonian
systems.

VII. PERSPECTIVES

Since most port-Hamiltonian systems are only strongly sta-
bilizable and in order to set up the LQG control problem for
SPHSs completely, the theory presented in this paper needs
to be extended.
A numerical method for solving LQG control problems of
stochastic port-Hamiltonian systems by the resolution of the
Riccati equations (23) and (24) still has to be developed
based on [MN10] and [GM96] for instance. Moreover, while
most approximation are based on the spatial discretization of
the geometric Dirac structure, a Galerkin method preserving
the port-Hamiltonian framework is introduced in [HD12].
It has to be adapted to the class of SPHSs presented here.
Indeed, the operator H acts on the Z-valued Wiener process
(w(t))t≥0, which leads to major difficulties in a numerical
method. Hence, (w(t))t≥0 has to be approximated. To do
so, the Karhunen-Loève expansion (see [DPZ08, Proposition
4.3]) could be applied.
Furtermore, the authors would like to stress that in order
to solve the stochastic LQ optimal control problem with
complete observation, a new promising approach based on
the Wiener chaos expansion via Wick-Hermite polynomials
(see [Wie38] and [CM47]) was proposed in [TL16]. This
allows to covert the stochastic LQ problem to an infinitely
many deterministic control problem so that the randomness
property is captured in Wick-Hermite basis.
Finally, the LQG control problem with boundary control
and observation for SPHSs is not considered in this paper.
The resulting unboundedness of the control and observation
operators leads to mathematical difficulties. It is worth notic-
ing that the case of control and observation applied at the
boundary is a natural extension of this work and it still being
investigated by the authors.
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