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Abstract— The optimal mass transport problem has recently
gained significant interest in application areas such as signal
processing, image processing, and computer vision. Although
the problem can be phrased as a linear program, in many cases
the resulting optimization problem is intractable due to the
vast number of variables. This issue was recently addressed by
introducing a perturbation in terms of an entropic barrier term
and solving the resulting optimization problem using Sinkhorn
iterations. In this extended abstract, based on [23], we extend
this to incorporate a class of optimization problems involving an
optimal transport cost. In particular we show that the proximal
operator of the optimal transport cost can be computed, also
for large problems, using Sinkhorn-type iterations. By using a
splitting framework, this is then used to solve inverse problems
where the optimal mass transport cost is used for incorporating
a priori information. We illustrate the method on a problem
in limited angle computerized tomography, where a priori
information is used to compensate for missing measurements.

I. INTRODUCTION

The optimal mass transport problem is sometimes refereed
to as the Monge-Kantorovich problem after the founding
fathers Gaspard Monge and Leonid Kantorovich [30]. In
the optimal transport problem the aim is to transform one
function (distribution) into another by moving the mass of the
function in a way that minimizes the cost of the movement.
This minimal cost of movement can be used as a distance for
comparing functions, which provides a geometric framework
that can be used in many contexts. The latter is also reflected
in that the approach lately has gained much interest in
several application fields such as signal processing [15], [16],
[19], image processing [18], [17], [21], computer vision and
machine learning [2], [24], [29]. For an overview of the
optimal mass transport problem, see, e.g., [30].

A drawback with the optimal transport problem is that
it is often hard to solve. Monge’s original formulation is
a nonconvex optimization problem, while the formulation
due to Kantorovich often results in large-scale optimization
problems that are intractable (impossible) to solve with
standard methods. Recently, a technique for approximating
a solution to the Kantorovich formulation was suggested in
[9]. In this approximation an entropic barrier term is added
to the cost function, whereafter the resulting optimization
problem is solved using the so called Sinkhorn iterations.
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In this extended abstract, which is based on [23], we use
and extend this idea. In particular, we consider variational
problems that contain an optimal mass transport cost, i.e.,
problems of the form

min
µest

Tε(µ0, µest) + g(µest), (1)

where Tε is the entropy regularized optimal mass transport
cost, and g both quantify data miss-match and can contain
other regularization terms. These kind of problems occur
frequently in regularization of inverse problems, in which µ0

is typically a given prior and the minimizing argument µest

is the sought reconstruction. However, they are also common
in other settings, e.g., when solving gradient flow problems
[5], [28] in the Jordan-Kinderlehrer-Otto framework [20],
and thus they have been studied before. In [5] the authors
consider a fluid dynamics formulation [4], and in [28]
an entropic proximal operator is used for solving similar
problems. In this work we will use a Douglas-Rachford
type method [12], [7], which is a so called variable splitting
technique in convex optimization [3], [11]. In order to do
so we propose a new fast iterative computational method
for computing the proximal operator of Tε(µ0, ·) based on
Sinkhorn-type iterations. This allows us to, e.g., solve large
scale inverse problems of interest in medical imaging.

A. Notation

Most operations in this paper are defined elementwise. In
particular we use �, ./, exp, and log, to denote elementwise
multiplication, division, exponential function, and logarithm
function, respectively. We also use ≤ (<) to denote elemen-
twise inequality (strict). Finally, let 1n denote the n × 1
(column) vector of ones.

II. THE OPTIMAL TRANSPORT PROBLEM

The Kantorovich formulation of the optimal transport
problem can be stated as follows: let Ω ⊂ Rd be a compact
set, and let µ0 and µ1 be two measures defined on Ω, with
the same total mass. The optimal transport cost between µ0

and µ1, denoted T (µ0, µ1), is defined as

T (µ0, µ1) = min
dM≥0

∫
(x0,x1)∈Ω×Ω

c(x0, x1)dM(x0, x1) (2)

subject to µ0(x0)dx0 =

∫
x1∈Ω

dM(x0, x1),

µ1(x1)dx1 =

∫
x0∈Ω

dM(x0, x1).

Here, c : Ω×Ω→ R+ is a given function that describes the
cost for transporting a unit mass from one point to another,
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and M is a nonnegative measure defined on Ω × Ω, called
the transference plan, describing how to transport the mass
between µ0 and µ1.

As mentioned in the introduction, the optimal transport
cost T (·, ·) can be used to to define a distance between
two measures. To this end, let c(x0, x1) = d(x0, x1)p for
p ≥ 1 and where d is a metric on Ω. Then Wp(µ0, µ1) :=
T (µ0, µ1)1/p defines a metric (the Wasserstein p-metric) on
the set of nonnegative measures on Ω with fixed mass [30,
Theorem 6.9]. Furthermore, T (and Wp) is weak∗ continuous
on this set, and in contrast to standard Lp metrics, optimal
transport distance does not only compare the functions
pointwise. Instead it quantifies the length that the mass is
moved, which makes the distance natural for quantifying
uncertainty and modelling deformations [13], [19], [22].

One way to solve the optimal transport problem in ap-
plications is to discretize Ω into a finite number of n
points and solve the corresponding finite-dimensional linear
programming problem. This problem takes the form

T (µ0, µ1) = min
M≥0

trace(CTM) (3)

subject to M1n = µ0, MT1n = µ1

where the matrix M ∈ Rn×n+ corresponds to the transfer-
ence plane and is defined by M := [mij ]ij , where mij

denotes the amount of mass transported from point x(i)

to x(j). Moreover, C = [cij ]ij , where cij = c(x(i), x(j))
is the transportation cost from x(i) to x(j). As mentioned
before, the issue with this formulation is the vast number of
variables, a total of n2. Thus if one seek to solve the optimal
transport problem between two 256×256 images this results
in (2562)2 variables, which is more than 4 · 109.

The approach suggested in [9] to circumvent this issue
is to introduce the entropic regularizing term D(M) =∑n
i,j=1(mij log(mij)−mij+1) . The resulting optimization

problem looks like

Tε(µ0, µ1) = min
M≥0

trace(CTM) + εD(M) (4)

subject to M1n = µ0, MT1n = µ1,

and for ε small this is a good approximation to (3). Moreover,
one can show that the solution to (4) takes the form

M = diag(u)Kdiag(v), (5)

where K = exp(−C/ε) is known, and u, v ∈ Rn+ are
unknown. This reduces the number of variables from n2 to
2n, and the two vectors u and v can be computed iteratively
by so called Sinkhorn iterations:

u = µ0./(Kv), v = µ1./(K
Tu).

III. THE DUAL PROBLEM AND GENERALIZED SINKHORN
ITERATIONS

One can show that the Sinkhorn iterations are in fact
identical to block-coordinate ascent of the corresponding
Lagrangian dual problem see [23], [10], [28]. We use this to
derive algorithms similar to Sinkhorn iterations for solving
problems on the form (1), and especially an algorithm for

computing the proximal operator of Tε(µ0, ·). However, in
order for (1) to be well-defined and convex, we make the
following assumption.

Assumption 1: Let g be a proper, convex and lower semi-
continuous function that is finite in at least one point with
mass equal to µ0, i.e., g(µest) < ∞ for some µest with∑n0

i=1 µ0(i) =
∑n1

j=1 µest(j).
By putting the definition (4) into (1) and relaxing the
constraints we can show the following proposition.

Proposition 1: Let µ0 > 0 be given and let g satisfy
Assumption 1. Then the Lagrange dual of (1) is given by

max
λ0,λ1

εn2 + λT0 µ0 − g∗(−λ1) (6)

− ε exp(λT0 /ε) exp(−C/ε) exp(λ1/ε)

and strong duality holds.
To find the solution to (6) we use block-coordinate ascent.
This is done by considering the optimality conditions for
(6), which is that zero must be a (sub)gradient of the cost
function [6, pp. 711-712].

Lemma 1: For a fixed λ1, then λ0 is the maximizing
vector of (6) if

µ0 = exp(λ0/ε)� (exp(−C/ε) exp(λ1/ε)) . (7a)

Similarly, for a fixed λ0, then λ1 is the maximizing vector
of (6) if

0∈∂g∗(−λ1)−exp(λ1/ε)�
(
exp(−CT/ε) exp(λ0/ε)

)
. (7b)

The proximal operator of the transportation cost Tε(µ0, ·)
is defined as

ProxσTε(µ0,·)(µ1) := arg min
µest

Tε(µ0, µest) +
1

2σ
‖µest−µ1‖22.

This is a special case of (1), where the data fitting term and
the corresponding conjugate functional are

g(µ) =
1

2σ
‖µ− µ1‖22, g∗(λ) = λT

(
µ1 +

σ

2
λ
)
.

Therefore, Lemma 1 can be used in order to find the optimal
solution. By alternatingly solving (7a) and (7b), for fixed λ1

and λ0 respectively, we obtain a dual block-coordinate ascent
algorithm for solving the dual problem (6). The algorithm is
shown in Algorithm 1, where ω denotes the elementwise
Wright ω function, i.e., the function mapping x ∈ R to
ω(x) ∈ R+ for which x = log(ω(x)) + ω(x) [8]. The
properties of the algorithm are summarized in the following
theorem.

Theorem 1: The variables (λ0, λ1) in Algorithm 1 con-
verges to the optimal solution of the dual problem (6), where
g(µ) = 1

2σ‖µ − µ1‖22. Furthermore, the convergence rate is
locally q-linear.

Remark 1: The bottlenecks in Algorithm 1 are the multi-
plications with the matrices K and KT , since all other opera-
tions are elementwise. However, in many cases of interest the
structures of K can be exploited for fast computations. This
is true in particular when the discretization points x(i) are on
a regular grid and the cost function is translation invariant.
In this case the matrix C, and thus also K, is a multilevel
Toeplitz-block-Toeplitz matrix, and the multiplication can be
performed in O(n log(n)) using the fast Fourier transform.
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Algorithm 1 Generalized Sinkhorn algorithm for evaluating
the proximal operator of Tε(µ0, ·).
Input: ε, C, λ0, µ0, µ1

1: K = exp(−C/ε)
2: while Not converged do
3: λ0 ← ε log (µ0./(K exp(λ1/ε)))
4: λ1 ← µ1

σ −εω
(
µ1

σε + log
(
KT exp(λ0/ε)

)
− log(σε)

)
5: end while

Output: µest ← exp(λ1/ε)� (KT exp(λ0/ε))

IV. DOUGLAS-RACHFORD SPLITTING AND EXAMPLE IN
COMPUTERIZED TOMOGRAPHY

In computerized tomography (CT), which is an imaging
modality frequently used in medical imaging [25], [26],
the object under investigation is probed with X-rays. Since
different materials attenuate X-rays to different degrees, the
intensities of the incoming and outgoing X-rays contain
information of the material content and distribution. Mathe-
matically, if µtrue(x) is the attenuation in the point x in the
object then a set of measurements in CT corresponds to the
line integral of µtrue along a limited set of lines. The operator
that maps µtrue to the line integrals is called a partial Radon
transform operator. This is a linear operator, and if A is a
partial Radon transform operator the problem in CT is to
reconstruct µtrue from measurements

b = A(µtrue) + noise.

However, this is an ill-posed inverse problem [14, p. 40], in
particular if the set of measurements is small or limited to
certain angles. Hence regularization is needed to obtain an
estimate µest of µtrue. This is often achieved by so called
variational regularization.

A. Douglas-Rachford splitting for problems of type (1)

The variational regularization we consider here is a total
variation (TV) reconstruction, but where we also use opti-
mal transport in order to incorporate prior information. In
particular, we consider the problem

min
µest

γTε(µ0, µest) + ‖∇µest‖2,1 (8)

subject to ‖Aµest − b‖2 ≤ κ,

where µ0 is a prior, κ quantifies the allowed measurement
error, and γ determines the trade off between the optimal
transport prior and the TV-regularization.

Douglas-Rachford splitting is an operator splitting tech-
nique for solving a rather general class of convex optimiza-
tion problems. In [7] the authors consider Douglas-Rachford
splitting for a family of problems that include problems of
the form (1). To apply this algorithm one needs to be able to
compute the proximal operators of the involved functionals,
and since we can evaluate the proximal operator of the
optimal transport term we can apply the Douglas-Rachford
splitting for solving (8) (see [23] for details).

B. Numerical simulation

In this example we consider the Shepp-Logan phantom
shown in figure 1a, of resolution 256×256 pixels, and
assume that the deformed image in figure 1b, also 256×256
pixels, has been reconstructed previously from a detailed CT
scan of the patient. We want to use this deformed image as
prior information µ0 in the problem (8) in order to improve
the reconstruction. In the example, data from the phantom is
obtained from 350 parallel lines, from 30 equidistant angles
in the interval [π/4, 3π/4]. Moreover, on this data set 5%
white Gaussian noise is added.1

The reconstruction is shown in figure 2c, together with a
TV-reconstruction in figure 2a and a reconstruction where
the prior information is incorporated using the `2 distance in
figure 2b. From the figures we see that the TV-reconstruction
suffers from artifacts and sever vertical blurring due to
poor vertical resolution resulting from the limited angle
measurements. For the `2 reconstruction some details are
visible, however these are at the same locations as in the
prior and does not adjust according to the measurements
from the phantom. Considerable artifacts also appear in this
reconstruction, typically as fade-in-fade-out effects where the
prior and the data do not match. This effect can not be
mitigated by the choice of regularization parameter, but is
inherent in that `2 is a pointwise and strong metric (see [23]).
For the reconstruction with optimal mass transport prior
some blurring occurs, especially in the top and the bottom
of the image. However, the overall shape is better preserved
compared to the other reconstructions. Fine details are not
visible, but the major features are better estimated compared
to the TV- and `2-reconstructions. This example illustrates
how one can improve the reconstruction by incorporating
prior information, but without the fade-in-fade-out effects
that typically occurs when using a strong metric such as `2
for regularization.
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(a) Phantom. (b) Prior.

Fig. 1. Figure showing (a) the Shepp-Logan phantom, (b) a deformed Shepp-Logan used as prior. Gray scale values are shown to the right of each image.

(a) TV reconstruction. (b) Reconstruction with `2 prior. (c) Reconstruction with optimal transport prior.

Fig. 2. Reconstructions using different methods. (a) reconstruction using TV-regularization, (b) reconstruction with `22-prior and TV-regularization, and
(c) reconstruction with optimal transport prior and TV-regularization.
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