
Study on Stability of General Discrete-Time Stochastic Difference
Systems*

Xiushan Jiang1, Tianliang Zhang1, and Weihai Zhang2

Abstract— This electronic document is a live template. The
various components of your paper [title, text, heads, etc.] are
already defined on the style sheet, as illustrated by the portions
given in this document.

I. EXTENDED ABSTRACT

Since Lyapunov initiated his direct method or called
Lyapunov’s second method about system stability in 1892,
Lyapunov’s stability theory has been occupying a dominant
position in mathematics and modern control theory, this is
due to the following twofold reasons: firstly, stability is
the first of all to be considered in system analysis and
design. Secondly, Lyapunov’s second method has been the
most powerful tool in testing a general nonlinear system
to be stable or unstable, which avoids solving ordinary
differential equations analytically. As applied in deterministic
ordinary differential equations and difference equations [1],
Lyapunov’ second method has been successfully extended to
study the stability of stochastic differential systems; see [2],
[3], [4]. However, there seems no systematic monograph or
work on stability of general discrete-time stochastic differ-
ence equations corresponding to [3], [4].

In this paper, we will report our recent studies in stabil-
ity of general discrete-time stochastic systems. At present,
difference systems become more and more important, this
is because many engineering problems can be modeled
by stochastic difference equations [5]. In addition, along
with the development of computer technology, the numerical
solution for stochastic differential equations has become a
popular research topic; see, e.g. [6], which is in fact a
discretized process. In recent years, the study on discrete
stochastic systems has attracted many scholars’ attention
[7], [8], [9]. In [10], we presented a discrete stochastic
maximal principle for the following optimal control problem:
minimize the cost functional

J(u, x0) =
N−1∑

k=0

El(xk, uk) + Eh(xN ) (1)

* This work was supported by the National Natural Science Foundation
of China (No. 61573227), the Research Fund for the Taishan Scholar
Project of Shandong Province of China and SDUST Research Fund
(No.2015TDJH105)

1Xiushan Jiang and Tianliang Zhang are with the School of Automa-
tion Science and Engineering, South China University of Technology,
Guangzhou 510641, China (e-mail: jiangxsjy@163.com,
t lzhang@163.com )

2 Weihai Zhang is with the College of Information and Electrical
Engineering, Shandong University of Science and Technology, Qingdao,
266590, China (e-mail:w hzhang@163.com)

subject to

xk+1 = g(xk, uk) + σ(xk, uk)ωk,

x0 ∈ Rn, k = 1, 2, · · · , N − 1, (2)

which is a counterpart to that of continuous-time Itô systems
[11]. In [12], we extended the classical LaSalle invariance
principle [13] to the following discrete-time time-varying
stochastic system:

{
xk+1 = Fk(xk, ωk),
x0 ∈ Rn, k ∈ N := {0, 1, 2, · · ·} (3)

which can also be viewed as a discrete version of [14]. As
applications, the nonlinear optimal regulator problem is also
solved in [12] for the optimized cost functional

min
u∈U

{J(u, x0) :=
∞∑

k=0

E [lk(xk, uk)]}. (4)

under the constraint of (3). Except for [12], we refer the
reader to [15], [16], [17] for optimal control of some special
kinds of discrete stochastic systems such as

xk+1 = f(xk) + g(xk)uk + h(xk)ωk.

The aim of this paper is to give several stability criteria
for the following system

{
xk+1 = Fk(xk, ωk), Fk(0, y) ≡ 0,∀y ∈ Rd,
xs = x ∈ Rn, k ∈ Ns := {s, s + 1, s + 2, · · ·} (5)

where in (5), xs (s ∈ N ) is the initial state, {xk}k∈Ns

is the Rn-valued state variable sequence. {ωk}k∈Ns
is an

independent Rd-valued random variable sequence defined on
a given complete probability space (Ω,F ,P). Fk : Rn ×
Rd 7→ Rn is a continuous function for k ∈ Ns. For system
(5), we denote its solution sequence as {xs,x

k }k∈Ns . We first
introduce some stability definitions such as stability in prob-
ability, stochastic asymptotic stability, stochastic asymptotic
stability in the large. Concretely speaking, the trivial solution
xk ≡ 0 of system (5) is said to be stable in probability if for
any s ∈ N and r > 0, we have

lim
‖x‖→0

P{ sup
k∈Ns

‖xs,x
k ‖ > r} = 0. (6)

If (6) holds uniformly in s ∈ N , then the trivial solution
xk ≡ 0 of (5) is said to be uniformly stable in probability.
The trivial solution xk ≡ 0 of system (5) is said to be
stochastically asymptotically stable in probability if it is
stochastically stable and moreover

lim
‖x‖→0

P{ lim
k→∞

xs,x
k = 0} = 1. (7)
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If (7) holds for all (s, x) ∈ N ×Rn, i.e., if (7) is replaced
by

P{ lim
k→∞

xs,x
k = 0} = 1, (8)

then the trivial solution xk ≡ 0 of system (5) is called
stochastically asymptotically stable in the large. All the
above introduced concepts are consistent with those of
continuous-time Itô systems in their formulations [4], [2],
however, it is more difficult to give practical criteria to test
the above stabilities. The reference [18] tried to discuss the
stability of system (5) by following the line of [2], where
LV (x, t) ≤ 0(< 0) in [2] is replaced by

E∆V (xs,x
k ) = EV (xs,x

k+1)− EV (xs,x
k ) ≤ 0(< 0). (9)

It should be pointed out that condition (9) is not easily
verified because it contains the mathematical expectation of
the state variable xs,x

k , while similar conditions has been used
in many references; see, e.g. [19], [20], [21]. Moreover, there
is something wrong in the proofs of the main theorems of
[18].

In order to improve the previous results and obtain effi-
cient criteria for discrete stochastic stability, new techniques
should be introduced. In this paper, by using Doob’s martin-
gale theory and stopping time theorem for supermartingale,
we have successfully generalized some classical stability
theorems existing in Itô systems to general discrete stochastic
system (5), which are expected to be useful in stochastic H∞
control and network control. Concretely speaking, the main
contributions of this paper is as follows:
• Give a sufficient condition for the system (5) to be stable

in probability. That is, if there exists a positive definite
Lyapunov sequence {Vk(x) := V (k, x)}k∈Ns

, Vk(x) ∈
Ns × Sr, s ∈ N , Sr := {x : ‖x‖ < r}, such that

∆Vk(x) = EVk+1(F (x, ωk+1))− Vk(x) ≤ 0, (10)

then system (5) is stable in probability.
• Moreover, if {Vk(x)}k∈N has an infinitesimal upper

limit, i.e.,
lim
‖x‖→0

sup
k∈N

Vk(x) = 0,

then the trivial solution of system (5) is uniformly stable
in probability.

• If there exists a positive definite decrescent Lyapunov
sequence {Vk(x)}k∈Ns

on Ns × Sr, such that ∆Vk(x)
is negative definite in Lyapunov’s sense, then the trivial
solution of system (5) is stochastically asymptotically
stable in probability.

• If there exists a positive definite decrescent radially
unbounded Lyapunov sequence {Vk(x)}k∈Ns on Ns ×
Rn, such that ∆Vk(x) is negative definite in Lyapunov’s
sense, then the trivial solution of system (5) is stochas-
tically asymptotically stable in the large.
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