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Abstract— This paper studies the distributed state estimation
problem for a class of linear time-invariant (LTI) systems with
multiplicative noises over multi-agent networks. First, adaptive
fusion matrices with distributed strategy is considered in terms
of consistency, which provides an upper bound for mean square
error matrix of each agent and the bound is minimized by
the designed time-varying filter gain. Based on the designed
fusion matrices and filter gain, a distributed robust Kalman
filter is proposed. Moreover, under mild conditions of collective
observability and network topology, it is shown that the mean
square error matrices of agents are uniformly upper bounded
and the information matrix of the network are uniformly lower
bounded by constant matrices both through finite time, which is
revealed to be the summation of collective observability param-
eter and network scale. Finally, the asymptotic unbiasedness of
the estimation of each agent is shown. Numerical simulation
shows the effectiveness of the proposed algorithm.

I. INTRODUCTION

State estimation problems or filtering problems have been
studied for several decades due to their close relationship
with parameter identification, signal reconstruction, target
monitoring and control design [1]. In recent years, the
research of distributed state estimation problems are drawing
more and more attention due to the various applications in
engineering systems such as communication networks, sen-
sor networks and smart grids [2], [3]. Due to the complexity
of environment and the uncertainties of systems, we have to
deal with some certain situations [4], [5], [6], which prevent
the real-time estimation for unknown stochastic dynamics.

Multiplicative noise, as one of the common system un-
certainties, exists in many cases like signal transmission
and sampling, amplitude modulation, etc. In centralized
frameworks, [6] studied the multiplicative noise for a kind
of linear discrete systems and provided a recursive state
estimator. In [7], the authors studied a class of discrete
time-varying systems with multiplicative noises and norm-
bounded uncertainties. Sufficient conditions to guarantee
an optimized upper bound of estimation covariance were
established in terms of two Riccati difference equations.
[8] proposed a recursive state estimator for a linear time-
varying system with parametric uncertainties and stochastic
measurement droppings, where theoretical analysis on the
convergence of the proposed robust estimator was given.
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Meanwhile, in the decentralized frameworks, some net-
worked robust filters have been proposed. The authors of [9]
studied the distributed fusion problem for uncertain systems
with correlated noises and they provided a weighted robust
Kalman filter involving a recursive computation of cross-
covariance matrix between any two sensors. [10] discussed
the robust estimation fusion problem in a distributed multi-
sensor systems with bounded uncertainties, where a minimax
robust estimation method was provided with the weighting
matrices formulated as a solution of a semidefinite program-
ming. Nevertheless, both [9] and [10] pay little attention
to the performance analysis of the proposed algorithms. In
[11], the author discussed the distributed robust estimation
problem based on H∞ consensus of estimates. To guarantee
a certain level of H∞ consensus, this paper provided a
sufficient condition, which yet seems difficult to be verified.
Although many robust filters have been provided, the stability
of the algorithms still need further investigation under the
distributed strategy.

The filter design plays an essential role in the study
of distributed estimation problem over networks, since it
directly influences the properties of the proposed algorithm,
such as convergence of estimation error, boundedness of
mean square error matrix, estimation precision, etc. [12]
studied the distributed filter with constant filtering gain and
fusion weight, based on which the relationship between the
instability of system and the boundedness of estimation
error was well analyzed. [13] proposed a measurement
based distributed Kalman filter (DKF) and provided a design
method on the time-invariant consensus weights. [14] studied
a general diffusion DKF with constant weights and analyzed
the performance of the proposed distributed filter based on a
local observability assumption, which yet is strict for large-
scale networks. In [15], [16], the design of time-varying
parameters relied on the assumption that each agent knows
the statistics of non-neighbors, which is not easy to be
satisfied over a large network.

In this paper, we consider the distributed filtering problem
with multiplicative noises in the system. Based on a general
distributed filtering structure, adaptive fusion matrices with
distributed strategy is considered in terms of consistency,
which provides an upper bound for mean square error matrix
of each agent and the bound is minimized by the designed
time-varying filter gain. Under the design of adaptive filtering
gain and weight matrix, a fully distributed Kalman filter
without the requirement of global knowledge of the system
[15], [16], [17] is provided. The proposed filter shows
good robustness in coping multiplicative noises. Under mild
conditions of collective observability and network topology,
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it is shown that the mean square error matrices of agents
are uniformly upper bounded and the information matrix
of the network are uniformly lower bounded by constant
matrices both through finite time, which is revealed to be the
summation of collective observability parameter and network
scale. Additionally, it is shown that the proposed algorithm
is convergent in the sense of expectation (i.e., asymptotic
unbiasedness).

The remainder of the paper is organized as follows:
Section II is on the problem formulation. Section III is on the
design of the filter. Section IV is the performance analysis
on the proposed filter. Section V shows the numerical sim-
ulation. The conclusion of this paper is given in section VI.
Some proofs in this paper are omitted due to the limitation
of pages.

A. Notations

Rn stands for the set of n-dimensional real vectors.
Also, R1 , R. Z+ stands for the set of positive integers.
The superscript “T” represents the transpose. The notation
A ≥ B (or A > B), where A and B are both symmetric
matrices, means that A − B is a positive semidefinite (or
positive definite) matrix. In stands for the identity matrix
with n rows and n columns. E{x} denotes the mathematical
expectation of the stochastic variable x. diag{·} represents
the diagonalization of scalar elements. |V| denotes the size
of the set V .

II. PROBLEM FORMULATION

We consider the following stochastic system over a multi-
agent network{

xk+1 = (A+ Fεk)xk + ωk,

yk,i = (Ci +Giγk,i)xk + vk,i, i = 1, 2, · · · , N,
(1)

where xk ∈ Rn is the state vector, ωk ∈ Rn is the zero-
mean white process noise with positive definite covariance
matrix Q, εk ∈ R is the zero-mean white multiplicative noise
with variance µk < ∞, subject to sup

k
µk < ∞. For agent

i, yk,i ∈ Rmi is measurement vector, γk,i is the zero-mean
white multiplicative noise with variance λi, and vk,i ∈ Rmi

is mean-zero white measurement noise with known positive
definite covariance matrices Ri. The initial state x0 is zero-
mean with known covariance P0. The random variable and
vectors {εk}∞k=0, {ωk}∞k=0, {γk,i}∞k=0, {vk,i}∞k=0 are mutu-
ally independent, and also independent of the initial state x0.
A, F , Gi and Ci are matrices with appropriate dimensions.
N is the agent number over the network. Different from
[15] requiring some global knowledge of statistics, we simply
assume that Q, µk, Ri, λi, P0, A, F , Ci, and Gi are known
to agent i.

The communication between agents in the multi-agent
network is modeled as a directed graph G = (V, E ,A), which
consists of the set of agents or nodes V = {1, 2, . . . , N},
the set of edges E ⊆ V × V , and the weighted adjacent
matrix A = [ai,j ]. In the weighted adjacent matrix A,
all the elements are nonnegative, row stochastic and the

diagonal elements are all positive, i.e., ai,i > 0, ai,j ≥
0,
∑

j∈V ai,j = 1. If ai,j > 0, j 6= i, there is an edge
(i, j) ∈ E , which means node i can directly receive the
information of node j, and node j is called the neighbor
of node i. All the neighbors of node i can be represented by
the set {j ∈ V|(i, j) ∈ E} , N 0

i . Also, N 0
i

⋃
{i} , Ni. G

is called strongly connected if for any pair nodes (i1, il),
there exists a directed path from i1 to il consisting of
edges (i1, i2), (i2, i3), . . . , (il−1, il). An undirected graph G
is simply called connected if it is strongly connected, and
it has a double stochastic (row and column) adjacent matrix
A = [ai,j ], which requires

∑
i∈V ai,j = 1,∀j ∈ V, besides

row stochastic.
In this paper, we consider the following distributed fil-

tering structure for agent i , ∀i ∈ V . This structure mainly
consists of three parts: time prediction, measurement update
and local fusion.

x̄k,i = Ax̂k−1,i,

φk,i = x̄k,i +Kk,i(yk,i − Cix̄k,i),

x̂k,i =
∑

j∈Ni
Wk,i,jφk,j ,

(2)

where x̄k,i, φk,i and x̂k,i are the state prediction, state update
and state estimate of agent i at the kth moment, respectively.
Kk,i is the filtering gain matrix and Wk,i,j is the local fusion
matrix.

The objective of this paper is to design adaptive Kk,i

and Wk,i,j , such that the stochastic dynamic in (1) is
well estimated by the filtering structure in (2) against the
multiplicative noises.

III. FILTER DESIGN

In the distributed estimation problem, since the accessible
information at each agent is limited, a practical design of
Kk,i and Wk,i,j should follow totally distributed strategy,
which means each agent only employs the information of
itself and its neighbors.

Considering the mutual independence between εk, xk and
ωk, one can easily obtain the next lemma, which will be
helpful in the subsequent analysis.

Lemma 1: The mean square of the state (i.e., Πk =
E{xkxTk }) can be derived through

Πk+1 = AΠkA
T + µkFΠkF

T +Q. (3)
Lemma 1 provides an iterative approach to calculate the

mean square of the system state, through which one can
evaluate the probability range of the state.

In adaptive filters, Kalman filter is the minimal variance
estimator for the linear Gaussian systems, thanks to the
adaptive filtering gain calculated through Pk, which stands
for the mean square error matrix. However, due to the strong
correlation between estimates of agents over networks, it
is difficult to derive the mean square error matrix through
distributed strategy. Since the mean square error of each
agent is not accessible, its upper bound is considered in
this paper in terms of consistency, which is defined in the
following.
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Definition 1: ([18]) Suppose xk is a random vector. Let
x̂k and Pk be the estimate of xk and the estimate of the
corresponding error variance matrix. Then the pair (x̂k, Pk)
is said to be consistent (or of consistency) at the kth moment
if

E{(x̂k − xk)(x̂k − xk)T } ≤ Pk.

The following condition on the initial estimate of each
agent is assumed for convenience. Note that Assumption 1
is easily satisfied and it can be guaranteed through setting a
sufficient large P0,i for each agent.

Assumption 1: The initial condition satisfies E{(x̂0,i −
x0)(x̂0,i − x0)T } ≤ P0,i, ∀i ∈ V .

The following theorem provides an adaptive design for
the local fusion matrices Wk,i,j in filtering structure (2),
based on which the consistency of estimation (x̂k,i, Pk,i) is
guaranteed.

Lemma 2: Considering the filtering structure (2), under
Assumption 1, if

Wk,i,j = ai,jPk,iP̃
−1
k,j , (4)

then the pairs

(x̄k,i, P̄k,i), (φk,i, P̃k,i), (x̂k,i, Pk,i)

are all consistent, where P̄k,i, P̃k,i and Pk,i are derived
through

P̄k,i =APk−1,iA
T + µk−1FΠk−1F

T +Q, (5)

P̃k,i =(I −Kk,iCi)P̄k,i(I −Kk,iCi)
T

+Kk,iR̄k,iK
T
k,i (6)

Pk,i =(
∑
j∈Ni

ai,jP̃
−1
k,j )−1. (7)

where R̄k,i = λiGiΠkG
T
i +Ri.

Proof: At the initial value, under Assumption 1, we
have

E{(x̂0,i − x0)(x̂0,i − x0)T } ≤ P0,i. (8)

To finish the proof, we use the inductive method. Suppose
at the kth time instant,

E{(x̂k,i − xk)(x̂k,i − xk)T } ≤ Pk,i. (9)

In the prediction step, since ωk, ek,i and εk are independent
of each other, it can be derived that

E{(x̄k+1,i − xk+1)(x̄k+1,i − xk+1)T }
=E{(Aek,i − εkFxk − ωk)(Aek,i − εkFxk − ωk)T }
=AE{ek,ieTk,i}AT + µkFE{xkxTk }FT +Q

≤APk,iA
T + µkFΠkF

T +Q

=P̄k+1,i. (10)

In the filtering update step, because of the mutual indepen-
dence between ēk+1 and vk+1,i, one can obtain

E{(φk+1,i − xk+1)(φk+1,i − xk+1)T }
=E{ẽk+1,iẽ

T
k+1,i}

≤(In −Kk+1,iCi)E{ēk+1ē
T
k+1}(In −Kk+1,iCi)

T

+Kk+1,i(λiGiΠkG
T
i +Ri)K

T
k+1,i

≤(In −Kk+1,iCi)P̄k+1(In −Kk+1,iCi)
T

+Kk+1,i(λiGiΠk+1G
T
i +Ri)K

T
k+1,i

=P̃k+1. (11)

In the local fusion step, under the design of Wk,i,j in (4),
according to (11) and the consistent estimation of CI strategy
([19]), we have

E{(x̂k+1,i − xk+1)(x̂k+1,i − xk+1)T } ≤ Pk+1,i. (12)

According to (9) – (12), under the initial condition (8), it
is safe to obtain the conclusions of this theorem.

Lemma 3: Minimizing P̃k,i (6) in the sense of positive
definiteness with respect to the gain matrix Kk,i yields

Kk,i = P̄k,iC
T
i (CiP̄k,iC

T
i + R̄k,i)

−1. (13)

where R̄k,i = λiGiΠkG
T
i +Ri. Also, (6) is equivalent to

P̃k,i = (I −Kk,iCi)P̄k,i. (14)
Proof: Consider (6), then we have

P̃k,i =(In −Kk,iCi)P̄k,i(In −Kk,iCi)
T

+Kk,iR̄k,iK
T
k,i

=P̄k,i −Kk,iCiP̄k,i − P̄k,iC
T
i K

T
k,i (15)

+Kk,iCiP̄k,iC
T
i K

T
k,i +Kk,iR̄k,iK

T
k,i

=P̄k,i −Kk,iCiP̄k,i − P̄k,iC
T
i K

T
k,i

+Kk,i(CiP̄k,iC
T
i + R̄k,i)K

T
k,i

=(Kk,i −K∗k,i)(CiP̄k,iC
T
i +Ri)(Kk,i −K∗k,i)T

+ (I −K∗k,iCi)P̄k,i,

where K∗k,i = P̄k,iC
T
i (CiP̄k,iC

T
i + R̄k,i)

−1.
Thus, from (15) it is seen that P̃k,i is minimized in the

sense of positive definiteness when Kk,i = K∗k,i.
Summing up Lemmas 2 and 3, the distributed robust

Kalman filter (DRKF) based on filtering structure (2) is
proposed in Table I.

IV. PERFORMANCE ANALYSIS

In the subsequent performance analysis, the following
assumptions are needed.

Assumption 2: The directed graph G = (V, E ,A) of the
multi-agent network is strongly connected.

Assumption 2 is a general condition in the study of
distributed estimation over a multi-agent network [20], [21].
If the network is completely connected [15], this assumption
can be naturally satisfied.
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TABLE I
DISTRIBUTED ROBUST KALMAN FILTER (DRKF):

Prediction:
x̄k,i = Ax̂k−1,i,
P̄k,i = APk−1,iA

T + µk−1FΠk−1F
T +Q,

Measurement Update:
φk,i = x̄k,i +Kk,i(yk,i − Cix̄k,i)

Kk = P̄k,iC
T
i

(
CiP̄k,iC

T
i + λiGiΠkG

T
i +Ri

)−1

P̃k,i = (I −KkCi)P̄k,i,
Local Fusion: Receiving (φk,j , P̃k,j ) from neighbors j ∈ Ni

x̂k,i = Pk,i
∑

j∈Ni
ai,j P̃

−1
k,j φk,j ,

Pk,i = (
∑

j∈Ni
ai,j P̃

−1
k,j )−1.

Assumption 3: There exists an integer N̄ > 0 and a scalar
α > 0, such that for ∀k ∈ Z+,

N∑
i=1

k+N̄∑
j=k

(Ak−1)TCT
i R̄
−1
j,i CiA

k−1 > αIn, (16)

where R̄j,i = λiGiΠjG
T
i +Ri.

Assumption 3 is a very mild requirement for the system
with multiplicative noises over measurements, since it per-
mits the local observation condition of each agent is not
met. If there is no multiplicative noise over measurements,
then Assumption 3 degenerates to the condition that (A,C)
is observable, where C = [CT

1 , C
T
2 , · · · , CT

N ]T , which is
a general requirement for distributed estimation [20], [21],
[22]. As is known, Assumption 3 is also a necessary con-
dition to guarantee the stability of centralized Kaman filter
which is optimal in some sense. It is noted that, in a single
filter, the multiplicative random noise of the system (i.e.,
process equation and measurement equation) will lead to
an irretrievable loss, if the state of the system is divergent
[23], [15]. However, in the distributed estimation, it is shown
in (16) that measurements of some agents are allowed to
tolerate the multiplicative noise.

Definition 2: The integer N̄ satisfying (16) is called the
collective observability parameter.

Assumption 4: sup
k
{µkFΠkF

T } <∞.

In the absence of multiplicative noises (i.e., µk = 0, k ∈
Z+), Assumption 4 holds naturally. In the presence of
multiplicative noises (i.e., µk > 0), Assumption 4 can also
be satisfied not only for bounded covariance matrices of
multiplicative noise and state [15], [17], but also for the
unbounded ones [20] if the speed of µk converging to zero
is fast enough. It is noted that the condition is reasonable,
since a rather large noise may lead to an irretrievable loss
for the state estimation.

Lemma 4: A sufficient condition to satisfy Assumption 4
is

‖A‖22 + µk‖F‖22 < 1,∀k ∈ Z+. (17)
Proof: From (3), we have

‖Πk+1‖2 = ‖AΠkA
T + µkFΠkF

T +Q‖2
≤ ‖Πk‖2(‖A‖22 + µk‖F‖22) + ‖Q‖2. (18)

In light of (17), by induction, ‖Πk+1‖2 is uniformly upper
bounded. Considering sup

k
µk < ∞, Assumption 4 can be

satisfied.
Remark 1: In the spatio-temporal applications ([24]), if

the correlation function of data is stationary, the correspond-
ing state-space form provides a stable system matrix A (i.e.,
‖A‖2 < 1).

The following theorem provides the upper boundedness of
mean square error matrix at each agent.

Theorem 1: Under Assumptions 1–4, if A is non-singular,
then there exists a constant matrix P̆ , such that for k ≥
L(L , N + N̄),

E{(x̂k,i − xk)(x̂k,i − xk)T } ≤ Pk,i ≤ P̆ ,∀i ∈ V. (19)
Remark 2: It is seen from Theorem 1 that the mean square

error matrix of each agent is uniformly bounded through
finite time (i.e., N+N̄ ), which is described by the collective
observability parameter (i.e., N̄ ) and the scale of the network
(i.e., N ).

The following conclusion illustrates the information accu-
mulation of the network by using the proposed algorithm.

Corollary 1: Under the same condition as Theorem 1, and
if the network is undirected, then there exists β > 0, such
that

I∗k =
∑
i∈V

I∗k,i ≥ βIn > 0,

where I∗k,i = (E{(x̂k,i − xk)(x̂k,i − xk)T })−1 and k ≥
N + N̄ .

It is seen from Corollary 1 that through finite time (i.e.,
N + N̄ ), the information matrix I∗k of the network will be
lower bounded by a constant information matrix, which is
independent of the concrete form of the adjacent matrix
and simply related with the system matrices. In the view of
information theory, this property illustrates that the proposed
algorithm can make full use of the system information
regardless of the adjacent matrix artificially designed.

Theorem 1 shows that the mean square error of each agent
is eventually upper bounded. The asymptotic unbiasedness of
estimation is provided in the following.

Theorem 2: Under the same conditions as Theorem 1,
the estimates of all the agents over the network using the
proposed DRKF are asymptotic unbiased (or convergent in
expectation), i.e.,

lim
k→+∞

E{x̂k,i − xk} = 0, ∀i ∈ V. (20)

Theorem 2 reveals that under the disturbances of mul-
tiplicative noises, the proposed DRKF can still guarantee
the asymptotic convergence in expectation. Combining the
conclusions of Theorems 2 and 1, one can not only ensure
the convergence of the algorithm before its implementation
but also evaluate the estimation precision of the filter at real
time.

V. NUMERICAL SIMULATION

In this section, we study a numerical simulation to test the
effectiveness of the proposed DRKF algorithm in Table I.
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Fig. 1. Communication topology of a agent network with 20 agents

Consider the following second-order stochastic dynamics
observed by twenty agents over a undirected and connected
network, which is illustrated in Fig. 1.xk+1 =

(
0.6 + εk 0.12

0.1 0.5 + εk

)
xk + ωk,

yk,i = (Ci + [1, 1]γk,i)xk + vk,i, i = 1, · · · , 20,

(21)

where the observation matrices of the twenty agents over the
network are uniformly randomly selected from the following
matrix set {(2, 1), (1, 0), (0, 1), (1, 2)}, which corresponds to
the variance set of γk,i: {0.01, 0.02, 0.05, 0.07}.

Here, it is assumed that the process noise covariance
matrix Q = diag{10, 10}, and the whole measurement
noise covariance matrix Ri = 1, i ∈ V . The initial value
of the state is generated by a Gaussian process with zero
mean and covariance matrix I2, and the initial estimation
settings are x̂i,0 = 0 and Pi,0 = diag{10, 10}, ∀i ∈ V .
The weighted adjacent matrix A = [ai,j ] is designed as
ai,j = 1

|Ni| , j ∈ Ni, i, j ∈ V . We conduct the numerical
simulation through Monte Carlo experiment, in which 500
Monte Carlo trials are performed. The mean square error of
the whole network is defined as

MSEk =
1

20

20∑
i=1

1

500

500∑
j=1

(x̂jk,i − x
j
k)T (x̂jk,i − x

j
k),

where x̂jk,i is the state estimation of the jth trail of agent i
at the kth moment.

The numerical simulation is carried out for the considered
system in (21) through employing the proposed distributed
robust Kalman filter. The tracking result with respect to the
proposed DRKF is provided in Fig. 2. From Fig. 2, it can be
seen that the stochastic dynamics can be well estimated with
DRKF by agents over the network. Further, the mean square
estimation error is shown in Fig. 3, which shows that the
estimation error of DRKF keeps stable and the consistency
of the proposed DRKF remains, i.e., an upper bound can be
obtained in real time to evaluate the estimation performance.
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Fig. 2. Tracking performance of distributed filter with DRKF
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Fig. 3. Tracking performance comparison between different filters

The above results reveal that the proposed DRKF is an
effective and flexible distributed state estimation algorithm.

VI. CONCLUSION

This paper studied the distributed state estimation problem
for the LTI systems with multiplicative noises. An online
adaptive design of filtering gain and fusion matrices without
requiring any global knowledge was provided. Under connec-
tivity of network and collective observability conditions of
the system, it was shown that the mean square error matrices
of agents are uniformly upper bounded and the information
matrix of the network are uniformly lower bounded by
constant matrices both through finite time, which is revealed
to be the summation of collective observability parameter
and network scale. The convergence of the estimation was
guaranteed in expectation.

REFERENCES

[1] Y. Sun, M. Fu, B. Wang, H. Zhang, and D. Marelli, “Dynamic state
estimation for power networks using distributed MAP technique,”
Automatica, vol. 73, no. 11, pp. 27–37, 2016.

MTNS 2018, July 16-20, 2018
HKUST, Hong Kong

751



[2] Z. Zhou, H. Fang, and Y. Hong, “Distributed estimation for moving
target based on state-consensus strategy,” IEEE Transactions on Au-
tomatic Control, vol. 58, no. 8, pp. 2096–2101, 2013.

[3] W. Yang, C. Yang, H. Shi, L. Shi, and G. Chen, “Stochastic link
activation for distributed filtering under sensor power constraint,”
Automatica, vol. 75, pp. 109–118, 2017.

[4] X. Lu, L. Xie, H. Zhang, and W. Wang, “Robust Kalman filtering for
discrete-time systems with measurement delay,” IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 54, no. 6, pp. 522–526,
2007.

[5] L. Zhang, Z. Ning, and Z. Wang, “Distributed filtering for fuzzy time-
delay systems with packet dropouts and redundant channels,” IEEE
Transactions on Systems Man & Cybernetics Systems, vol. 46, no. 4,
pp. 559–572, 2016.

[6] B. S. Chow and W. Birkemeier, “A new recursive filter for systems
with multiplicative noise,” IEEE transactions on information theory,
vol. 36, no. 6, pp. 1430–1435, 1990.

[7] F. Yang, Z. Wang, and Y. Hung, “Robust Kalman filtering for discrete
time-varying uncertain systems with multiplicative noises,” IEEE
Transactions on Automatic Control, vol. 47, no. 7, pp. 1179–1183,
2002.

[8] T. Zhou, “Robust recursive state estimation with random measurement
droppings,” IEEE Transactions on Automatic Control, vol. 61, no. 1,
pp. 156–171, 2016.

[9] J. Feng, Z. Wang, and M. Zeng, “Distributed weighted robust Kalman
filter fusion for uncertain systems with autocorrelated and cross-
correlated noises,” Information Fusion, vol. 14, no. 1, pp. 78–86, 2013.

[10] X. Qu, J. Zhou, E. Song, and Y. Zhu, “Minimax robust optimal esti-
mation fusion in distributed multisensor systems with uncertainties,”
IEEE Signal Processing Letters, vol. 17, no. 9, pp. 811–814, 2010.

[11] V. Ugrinovskii, “Distributed robust filtering with H∞ consensus of
estimates,” Automatica, vol. 47, no. 1, pp. 1–13, 2011.

[12] U. A. Khan and A. Jadbabaie, “Collaborative scalar-gain estimators
for potentially unstable social dynamics with limited communication,”
Automatica, vol. 50, no. 7, pp. 1909–1914, 2014.

[13] S. Das and J. M. F. Moura, “Distributed Kalman filtering with dynamic
observations consensus,” Signal Processing IEEE Transactions on,
vol. 63, no. 17, pp. 4458–4473, 2015.

[14] F. S. Cattivelli and A. H. Sayed, “Diffusion strategies for distributed
Kalman filtering and smoothing,” IEEE Transactions on Automatic
Control, vol. 55, no. 9, pp. 2069–2084, 2010.

[15] Y. Liu, Z. Wang, X. He, and D. Zhou, “Minimum-variance recursive
filtering over sensor networks with stochastic sensor gain degradation:
Algorithms and performance analysis,” IEEE Transactions on Control
of Network Systems, vol. 3, no. 3, pp. 265–274, 2016.

[16] W. Li, Y. Jia, and J. Du, “Distributed filtering for discrete-time linear
systems with fading measurements and time-correlated noise,” Digital
Signal Processing, vol. 60, pp. 211–219, 2017.

[17] C. Wen, Z. Wang, Q. Liu, and F. E. Alsaadi, “Recursive distributed
filtering for a class of state-saturated systems with fading measure-
ments and quantization effects,” IEEE Transactions on Systems, Man,
and Cybernetics: Systems, 2016.

[18] S. J. Julier and J. K. Uhlmann, “A non-divergent estimation algorithm
in the presence of unknown correlations,” vol. 4, pp. 2369–2373, 1997.

[19] W. Niehsen, “Information fusion based on fast covariance intersection
filtering,” in International Conference on Information Fusion, pp. 901–
904, 2002.

[20] X. He, W. Xue, and H. Fang, “Consistent distributed state estimation
with global observability over sensor network,” Automatica, vol. 92,
pp. 162–172, 2018.

[21] X. He, C. Hu, W. Xue, and H. Fang, “On event-based distributed
kalman filter with information matrix triggers,” vol. 50, no. 1, p-
p. 14308–14313, 2017.

[22] G. Battistelli and L. Chisci, “Kullback-cleibler average, consensus on
probability densities, and distributed state estimation with guaranteed
stability ,” Automatica, vol. 50, no. 3, pp. 707–718, 2014.

[23] J. Tugnait, “Stability of optimum linear estimators of stochastic
signals in white multiplicative noise,” IEEE Transactions on Automatic
Control, vol. 26, no. 3, pp. 757–761, 1981.

[24] S. Sarkka, A. Solin, and J. Hartikainen, “Spatiotemporal learning
via infinite-dimensional bayesian filtering and smoothing: A look at
gaussian process regression through Kalman filtering,” IEEE Signal
Processing Magazine, vol. 30, no. 4, pp. 51–61, 2013.

MTNS 2018, July 16-20, 2018
HKUST, Hong Kong

752


