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Abstract— We present a new approach to certifying the
nonnegativity of homogeneous multivariate polynomials that is
based on the theory of hyperbolic polynomials. Moreover, the
search for certificates of nonnegativity can be automated by
solving a hyperbolic optimization problem. The main technical
fact that enables these nonnegativity certificates is a polynomial
parameterization (up to closure) of the dual cone of a hyperbol-
icity cone, a construction essentially due to Kummer, Plaumann,
and Vinzant. This extended abstract presents the basic idea of
such hyperbolic certificates of nonnegativity, and discusses what
is known about the relationship between sums of squares and
polynomials with hyperbolic certificates of nonnegativity.

I. EXTENDED ABSTRACT

The problem of deciding nonnegativity of a multivariate
polynomial is a fundamental problem that arises, for instance,
when searching for certificates of stability of dynamical
systems, or as an approach to globally solving polynomial
optimization problems (see, e.g., [1]).

Deciding nonnegativity of a multivariate polynomial is, in
general, a computationally challenging problem. One way to
make progress is to find sufficient conditions for polynomial
nonnegativity that can be verified in a computationally effi-
cient manner. One such condition is that if a polynomial can
be written as a sum of squares, then it is nonnegative. The
converse holds for homogeneous polynomials of degree 2d in
n variables if and only if 2d = 2, n = 2, or (n, 2d) = (3, 4),
a classical result of Hilbert [2].

While it is difficult to decide whether a polynomial is
nonnegative, deciding whether a polynomial is a sum of
squares of other polynomials is much more tractable. In
fact, it can be recast as the problem of deciding whether an
affine subspace intersects the cone of positive semidefinite
matrices. This is a semidefinite feasibility problem that can
typically be solved using numerical methods for semidefinite
optimization.

Hyperbolic optimization is a natural generalization of
semidefinite optimization. In hyperbolic optimization the role
of the positive semidefinite cone is replaced by a convex
cone constructed from a hyperbolic polynomial—a multivari-
ate polynomial with certain real-rootedness properties (see
Section I-A). One can recover the positive semidefinite cone
by taking the hyperbolic polynomial to be the determinant
restricted to symmetric matrices. Hyperbolic optimization
problems can, in principle, be solved efficiently via interior
point algorithms. Can we exploit this to obtain classes of
certificates of the nonnegativity of multivariate polynomials
that are different from sum-of-squares certificates?
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In this extended abstract, we introduce hyperbolic certifi-
cates of nonnegativity. Given a hyperbolic polynomial we
construct a convex set of polynomials, the nonnegativity of
which is a consequence of the hyperbolicity of p. Moreover
we can search over this family of nonnegative polynomials
via solving a hyperbolic optimization problem. The approach
is based on the existence of a polynomial map, the image of
which is (up to closure) the dual of the hyperbolicity cone
(see (1) for the definition of a hyperbolicity cone). This map
was identified by Kummer, Plaumann, and Vinzant [3], who
also established a number of its fundamental properties.

Beyond introducing these families of certificates, and
discussing some of their properties that can be easily deduced
from prior work, our main contributions are:

• to show that the nonnegativity of any sum of squares
can also be certified using a hyperbolic certificate of
nonnegativity (Theorem 1.6);

• to show that for any d ≥ 4 and any n ≥ d there exists
a polynomial of degree 2d−2 in n variables that is not
a sum of squares, but the nonnegativity of which can
be certified using an appropriate hyperbolic certificate
of nonnegativity (Theorem 1.9).

A. Hyperbolic polynomials and hyperbolic optimization

A homogeneous polynomial p in n variables of degree d
is hyperbolic with respect to e ∈ Rn if p(e) ≥ 0 and, for
all x ∈ Rn, the univariate polynomial t 7→ p(x + te) has
only real roots. Associated with any hyperbolic polynomial
p, and direction of hyperbolicity e, is a closed cone

Λ+(p, e) = {x ∈ Rn :

all roots of t 7→ p(te− x) are nonnegative}. (1)

That this is always a convex cone is a classical result due to
Gårding [4]. These convex cones, called hyperbolicity cones,
are of interest in optimization because the convex function
− loge(p(x)) is a self-concordant barrier function for the
cone Λ+(p, e). As such, as long as p (and its gradient and
Hessian) can be computed efficiently, convex optimization
problems of the form

min
x
〈c, x〉 subject to

{
Ax = b,

x ∈ Λ+(p, e)

can be solved using interior point methods [5], [6]. Such
problems are called hyperbolic programs, or hyperbolic
optimization problems.
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B. Conic certificates of nonnegativity

There is a natural general strategy for certifying nonnega-
tivity of polynomials (and other types of functions, see [7] for
interesting examples) by solving convex feasibility problems.
We briefly outline this strategy before describing how to
obtain instances of the general approach via hyperbolic
polynomials.

Suppose K ⊆ Rn is a convex cone and

K∗ = {` ∈ (Rn)∗ : `[x] ≥ 0 for all x ∈ K}

is its dual cone. (We use the notation `[x] for the image of
x under a linear functional `.) Let ψ : Rm → (Rn)∗ be a
homogeneous polynomial mapping such that ψ(x) ∈ K∗ for
all x ∈ Rm. Given a homogeneous polynomial f of degree
d, we can try to certify the nonnegativity of f by solving the
convex feasibility problem:

find v ∈ K such that f(x) = ψ(x)[v] for all x ∈ Rm.

If we can find such a v ∈ K, then f is necessarily
nonnegative. This is because v ∈ K and ψ(x) ∈ K∗ for all x,
so (by the definition of the dual cone) ψ(x)[v] ≥ 0 for all x.
Another view of this construction is that it produces a convex
cone of nonnegative polynomials {ψ(x)[v] : v ∈ K}, over
which optimization problems may be formulated.

To make this formalism computational, we need
• a convex cone K with respect to which we can (effi-

ciently) solve the associated conic feasibility problem;
• a homogeneous polynomial map ψ such that K∗ is the

closure of the convex hull of the image of ψ.
Certificates of polynomial nonnegativity via sums of squares
have exactly this form, via the following well-known
reformulation. The map ψ(x) has the form ψ(x) =
md(x)md(x)T where md(x) is the vector consisting of all
monomials of degree d in n variables. The cone K is the
(self-dual) positive semidefinite cone. An expression of the
form

f(x) = tr
(
md(x)md(x)TG

)
where G is positive semidefinite, gives rise to an expression
for f as a sum of squares. Indeed, if we expand G as G =∑
i viv

T
i , then

f(x) = tr

(
md(x)md(x)T

∑
i

viv
T
i

)
=
∑
i

(vTi md(x))2

is a sum of squares of polynomials.

C. Hyperbolic certificates of nonnegativity

We now outline how to use hyperbolic polynomials and
hyperbolic programming to obtain maps ψ and cones K (be-
yond the positive semidefinite cone) to use in the framework
of the previous section.

Let p be a homogeneous polynomial of degree d, hyper-
bolic with respect to e ∈ Rn. Let Λ+(p, e) be the associated
hyperbolicity cone. Next we describe a homogeneous poly-
nomial map φp,e : Rn → Rn that takes values in Λ+(p, e)∗,
the dual of the hyperbolicity cone.

If y ∈ Rn then let

Dp(x)[y] =
d

dt
p(x+ ty)

∣∣∣∣
t=0

be the directional derivative of p in the direction y. Let

D2p(x)[y, y] =
d2

dt2
p(x+ ty)

∣∣∣∣
t=0

and extend D2p(x)[·, ·] to a bilinear form by polarization.
For each x ∈ Rn, define φp,e(x) : Rn → (Rn)∗ by

φp,e(x)[v] = Dp(x)[e]Dp(x)[v]− p(x)D2p(x)[e, v]. (2)

Note that φp,e(x)[·] is a polynomial mapping, homogeneous
of degree 2d−2. The following result of Kummer, Plaumann,
and Vinzant [3, Theorem 3.1] establishes a close link be-
tween the hyperbolicity cone Λ+(p, e) and the nonnegativity
of φp,e(x)[·].

Theorem 1.1 (Kummer, Plaumann, Vinzant): If p is
squarefree, homogeneous of degree d, and hyperbolic with
respect to e ∈ Rn then

φp,e(x)[v] ≥ 0 for all x ∈ Rn ⇐⇒ v ∈ Λ+(p, e).

On the one hand, one can interpret this result as a description
of any hyperbolicity cone as a slice of the cone of non-
negative polynomials of degree 2d−2 in n variables. This is
the interpretation that was the focus of Kummer, Plaumann,
and Vinzant’s work. On the other hand, we could also
interpret this result as providing a family of non-negative
polynomials that we can search over efficiently using hyper-
bolic optimization. This is the interpretation we focus on in
this extended abstract.

We can use this basic result in a more elaborate way in
the formalism introduced in Section I-B, as follows.

Definition 1.2 (Hyperbolic certificates of nonnegativity):
Let F (x) : Rm → Rn be a homogeneous polynomial map.
Let p be homogeneous of degree d and hyperbolic with
respect to e ∈ Rn. Define ψ : Rm → (Rn)∗ by

ψ(x)[·] := φp,e(F (x))[·] for all x ∈ Rm.

Then any polynomial of the form ψ(x)[v] where v ∈
Λ+(p, e), is nonnegative, and we call it a hyperbolic cer-
tificate of nonnegativity.
Given a multivariate polynomial f , we can search for a
hyperbolic certificate of nonnegativity of f by choosing F ,
p, and e in Definition 1.2, and solving the convex decision
problem

find v ∈ Λ+(p, e) s.t. f(x) = ψ(x)[v] for all x ∈ Rm.

D. The map φp,e almost parameterizes the dual cone

A dual interpretation of Kummer, Plaumann, and Vinzant’s
result (Theorem 1.1) is that the closure of the conic hull of
the image of φp,e is the dual cone Λ+(p, e)∗. The next result
tells us that the image of φp,e almost fills up all of Λ+(p, e)∗.
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Proposition 1.3: If p is homogeneous of degree d and
hyperbolic with respect to e ∈ Rn then

interior(Λ+(p, e)∗) ⊆ φp,e(Rn) ⊆ Λ+(p, e)∗.

Here the right-hand inclusion is from Theorem 1.1, in the
case where p is squarefree, and can easily be extended to
the case in which p has repeated irreducible factors. The left-
hand inclusion is essentially due to Güler (see [5, Theorem
6.2]).

E. Examples

We now present two of the most basic examples of
hyperbolic polynomials, their hyperbolicity cones, and the
associated map φp,e.

Example 1.4 (Non-negative orthant): Let

p(x) =

n∏
i=1

xi and e = 1n.

In this case Λ+(p, e) = Λ+(p, e)∗ = Rn+, the non-negative
orthant. The mapping φp,e is given by

φp,e(x)[u] =

n∑
j=1

uj
∏
i 6=j

x2i .

Clearly φ(x)[·] ∈ (Rn+)∗ = Rn+ for all x. Moreover, the
image of φp,e contains all of the extreme rays of the cone.
Indeed let x(i) ∈ Rn be such that x(i)j = 1 if j 6= i and
x
(i)
i = 0. Then φp,e(x

(i)) is the linear functional such that
φp,e(x

(i))[u] = ui.
We note that the image of φp,e is not all of the orthant.

For example, there is no x ∈ Rn such that

φp,e(x) =
[
1 1 0 · · · 0

]
.

Example 1.5 (Positive semidefinite cone): Let p(X) =
det(X) where X is a symmetric matrix of indeterminates
and let e = In be the n × n identity matrix. In this case
Λ+(p, e) = Λ+(p, e)∗ = Sn+, the positive semidefinite cone.
The mapping φp,e is given by

φp,e(X)[U ] = tr(Uadj(X)2)

where adj(X) is the classical adjoint of X , given by
det(X)X−1 for non-singular matrices X . Clearly adj(X)2 ∈
Sn+ for all X because it is the square of a symmetric matrix.
Moreover, the image of φp,e contains all of the extreme rays
of the cone. Indeed if w is a unit vector in Rn then

adj(I − wwT )2 = wwTwwT = wwT .

F. Relationship with sums of squares

In section I-C we have seen how to construct families of
nonnegative polynomials that have hyperbolic certificates of
nonnegativity from a choice of hyperbolic polynomial p, a
direction of hyperbolicity e, and a polynomial map F . In this
section, we discuss how these families of polynomials relate
to sums of squares.

The following result shows that by an appropriate choice
of hyperbolic polynomial p, direction of hyperbolicity e, and

map F , we can establish nonnegativity of all homogeneous
polynomials that are sums of squares.

Theorem 1.6: Suppose q is a homogeneous polynomial
of degree 2d in n variables that is a sum of squares. Let
p(X) = det(X) where X is

(
n+d−1

d

)
×
(
n+d−1

d

)
. Let md(x)

denote the vector of monomials homogeneous of degree d in
n variables. Let F (x) = md(x)Tmd(x)I −md(x)md(x)T .

Then there exists Q ∈ Λ+(p, I) = S(n+d−1
d )

+ such that

(md(x)Tmd(x))2(
n+d−1

d )−3q(x) = φdet,I(F (x))[Q].

Note that with this choice of (p, e) = (det, I), the hyperbolic
optimization problem we would solve to certify nonnegativ-
ity of q would be exactly the usual semidefinite optimization
problem we would solve to decide whether q is a sum of
squares. (Note that, in order to make the degrees match, we
needed to multiply on the left by a power of the known
polynomial md(x)Tmd(x). We could, equivalently, ask for
equality just for points x on the sphere. At these points
md(x)Tmd(x) = 1.)

We have seen that hyperbolic certificates of nonnegativity
can, with careful selection of the map F and the hyperbolic
polynomial p, establish nonnegativity of all polynomials that
are sums of squares. We now consider the reverse situation.
Is it the case that φp,e(x)[u] is always a sum of squares when
u ∈ Λ+(p, e)?

We first review two results from [3]. The first shows that if
a polynomial has a definite determinantal representation, then
any corresponding hyperbolic certificate of nonnegativity is
a sum of squares.

Theorem 1.7 (Kummer, Plaumann, Vinzant): Suppose
there are symmetric matrices A1, . . . , An such that∑n
i=1Aiei is positive definite, and there exists a positive

integer α such that p(x)α = det (
∑n
i=1Aixi). Then, for

any homogeneous polynomial map F : R` → Rn, and any
u ∈ Λ+(p, e), φp,e(F (x))[u] is a sum of squares.

The next result follows directly from Theorem 1.7 and
the Helton-Vinnikov Theorem [8], [9], which implies that
any hyperbolic polynomial in three variables has a definite
determinantal representation.

Corollary 1.8 (Kummer, Plaumann, Vinzant): If p is a hy-
perbolic polynomial in three variables, F : R` → R3 is any
polynomial map, and u ∈ Λ+(p, e), then φp.e(F (x))[u] is a
sum of squares.

One may wonder whether φp,e(x)[u] is always a sum of
squares when u ∈ Λ+(p, e). We have seen that this is the
case for polynomials in three variables. It is also the case
for hyperbolic polynomials p of degree 2, because, in this
case, for each u ∈ Λ+(p, e) the polynomial φp,e(x)[u] is
nonnegative and of degree two, and so is a sum of squares.
In [3, Example 5.11] it is shown (but not explicitly) that
there exists a hyperbolic polynomial p of degree four in
eight variables, and an element u ∈ Λ+(p, e), such that
φp,e(x)[u] is not a sum of squares. The following result,
the main result of this extended abstract, asserts that many
more such examples can be found.
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Theorem 1.9: For any d ≥ 4 and any n ≥ d there exists
a homogeneous polynomial p of degree d, hyperbolic with
respect to e ∈ Rn, and some u ∈ Λ+(p, e), such that
φp,e(x)[u] is not a sum of squares.

In the case n = d = 4, the choice of p is exactly the
specialized Vámos polynomial h4(w, x, y, z), considered by
Kummer [10], in the direction e = (0, 1, 1, 0) and u =
(0, 1, 0, 0). Examples with degree d and number of variables
n satisfying 4 ≤ d ≤ n can be constructed based on this
example.

It is natural to conjecture that such examples exist when-
ever the degree (of the hyperbolic polynomial) is at least
three, and the number of variables is at least four.

Conjecture 1.10: If d ≥ 3 and n ≥ 4, there exists a
polynomial p homogeneous of degree d and hyperbolic with
respect to e ∈ Rn and a point u ∈ Λ+(p, e) such that
φp,e(x)[u] is not a sum of squares.

G. Discussion

One practical issue with experimenting with hyperbolic
certificates of nonnegativity is the lack of widely avail-
able numerical methods for solving hyperbolic optimization
problems. In some cases (see, e.g., [11]), explicit semidef-
inite programming descriptions of hyperbolicity cones are
known, and could be used. One motivation for this work
is to highlight possible systematic ways to use hyperbolic

optimization, in order to spur the development of tools to
solve this interesting class of optimization problems.
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