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Secure Estimation for Linear Time-varying Process via Local Estimators

Liang Xu, Xinghua Liu and Yilin Mo

Abstract— We are interested in the secure estimation prob-
lem of a linear time-varying Gaussian process. m sensors
are deployed to measure the process state and p out of m
sensors might undergo integrity attack, which means their
measurements can be arbitrarily manipulated by attackers. We
first show that the Kalman filter can be decomposed into m
local estimators and then summed up to obtain the Kalman
estimate. Then we show a least square interpretation to the
fusion process and based on which a convex optimization based
secure estimation scheme is proposed. The secure estimation
algorithm guarantees that when all the sensors are benign, the
secure estimate coincides with the Kalman filter. When less
than half of the sensors are compromised, the secure estimation
scheme can still generate an estimate with bounded error.
Moreover, numerical simulations are conducted to verify the
effectiveness of the proposed algorithm.
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I. INTRODUCTION

The security problem has been studied in computer science
for several decides, where attacks mostly affect software sys-
tems only and do not incur large physical impact. However,
attacks on the cyber-physical systems, for example attacks
on power systems, transportation networks, industrial control
processes and critical infrastructures, has large impact on
the physical world and everyday life. Therefore the security
issues for cyber-physical systems have been extensively
studied in recent years.

Traditionally, the fault detection and isolation has been
widely studied to handle random failures, see [1]. However,
these methods are not suitable for dealing with intelligent
attacks [2]. Moreover, detecting and isolating attacks is also
computationally hard [3], [4]. Therefore it is more suitable
to design secure estimators that can tolerate a small portion
of sensory data being attacked.

The traditional Kalman filter is not robust to sensor
attacks, since the attack can accumulated in the estimation
process and the adversary can exploit this fact to introduce
a large estimation error [5], [6]. [7], [3] propose a moving
horizon approach, which only use finite sensor data, not the
entire historical data, to estimate system states to avoid the
accumulation of attack signals. [8], [9] further generalize
the result to consider bounded and random noises. However,
since these secure estimators only use finite measurements,
they have an estimation performance loss even in the case of
no attacks. [10], [11] propose a convex optimization based
secure estimation scheme, which can guarantee that when
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all the sensors are benign, the secure estimation scheme
coincides with the Kalman estimate. Instead of relaxing with
convex optimization techniques, [12] proposes Satisfiability
Modulo Theory based techniques to exploit the combinatorial
nature of searching over sensor subsets. However, the above
works only consider time-invariant systems.

This extended abstract extends the result in [10], [11]
to consider the secure estimation problem of linear time-
varying systems. The main contributions are as follows: 1)
this extended abstract propose a decomposition method for
the Kalman filter; 2) a least square interpretation to the fusion
scheme is demonstrated; 3) a convex optimization based
secure estimation scheme is also proposed, and it is show
that when all the sensors are benign, the secure estimate
can generate the Kalman estimate. When less than half of
the sensors are under attack, the secure estimator can still
generate a bounded estimate.

The extended abstract is organized as follows: Section II
is the problem formulation. The Kalman filter decomposition
and the least square interpretation are given in Section III.
Section IV introduces the secure information fusion scheme.
The numerical simulations are provided in Section V and
this extended abstract ends with some concluding remarks
in Section VI

II. PROBLEM FORMULATION

This extended abstract studies the following time-varying
process

z(k+1) = A(k)z(k) + w(k), (D

where z(k) € R™ is the state and w(k) is the process noise.
We assume that the initial condition satisfies 2:(0) ~ A (0, X)
with ¥ > 0; the process noise satisfies w(k) ~ N (0, Q(k))
and w(k;) and w(kz) are independent for any k; # ko.
m sensors are deployed to measure the process state. The
measurement output at each sensor is

yi(k) = Ci(k)a (k) + vi(k) + ai(k), 2

where y;(k) € R is the sensor measurement; v;(k) is the
stochastic measurement noise and a;(k) is the deterministic
bias injected by the attacker. (2) can be equivalently formu-
lated as

i1=1,...,m,

y(k) =

C(k)x(k) +v(k) + a(k),

where (k) 1 (k), .. ym ()],
[Cy(K),...,Cn(k)] and a(k) = [al k),...,am(k)]. We
further assumed that v(k) ~ N(0, R(k));
are independent for any ki # ko and w(k
independent for any kq, ko.

3)

C(k)

v( 1) and v(k2)
), v(kz),z(0) are



MTNS 2018, July 16-20, 2018
HKUST, Hong Kong

Remark 1: The dynamics (1), (3) can model the scenario
that a continuous-time process is monitored by multiple
sensors with asynchronous measurements or transmission
packet losses. Consider the simple case that the continuous-
time process is a linear system with &(t) = Axz(t), y;(t) =
Cix(t),i = 1,...,m. Then A(k) = exp(Ar), where 7 is
the time interval between two consecutive measurements.
Moreover, C(k) = [C!,...,C" ] with C; either be C; if
the -th sensor’s measurement is accessible at time instance
k or 0 otherwise.

Due to the resource constraints of the attacker, we assume
that at most p sensors can be compromised with arbitrarily
chosen a;. We try to propose a secure estimation scheme
using the potentially compromised sensor measurement (3)
such that when all the sensors are benign, the secure estima-
tion scheme provides satisfactory estimation performance. In
the case that p out of m senors are compromised, the secure
estimation scheme can still guarantee a bounded estimation
error for arbitrary attack signal a;.

III. KALMAN FILTER DECOMPOSITION USING LOCAL
ESTIMATE

In this section, we assume that all the sensors are benign
and propose a method to decompose the Kalman filter, which
contains m local estimators using only local measurements
and a fusion schemes to merge local estimates to obtain the
Kalman estimate. We then show that the fusion procedure
can be recast as a least square problem, based on which
we further propose a secure estimation scheme in the next
section.

If all sensors are benign, i.e., a(k) = 0 for all k, the
optimal state estimator is the Kalman filter

&(k) = 2(klk — 1) + K(k)(y(k) — C(k)2(k|k — 1)) 4
P(k) = P(klk — 1) — K(k)C(k)P(k|k — 1)

where

z(k + 1|k) = A(k)z(k),
P(k+1lk) = AK)P(k)A(K) + Q(k)
K(k) = P(k|k — 1)C (k) (C(k)P(k|k — 1)C(k) + R(k))™*
with initial condition
z(0]-1)=0,P(0]—-1)=%.

We further make the following assumptions,

Assumption 2: A(k) and A(k) — K(k+1)C(k+1)A(k)
are invertible for all k.

Remark 3: If A(k) = exp(Ar) is from discretizing a
linear continuous-time system, then it is automatically in-
vertible. Then the condition is equivalent to the invertibility
of I - K(k)C(k). If Q(k) > 0, R(k) > 0, we can show that
I — K(k)C(k) is also invertible. Since P(k|k — 1) > 0, the
invertibility of I — K (k)C(k) is equivalent to that of P(k|k—
1)— K (k)C(k)P(k|k—1). Further from the matrix inversion
lemma, we know that P(klk — 1) — K(k)C(k)P(klk —
1) = (P(klk — 1)' + C(k)R(k)~'C(k))~!. Therefore
I — K(k)C(k) is invertible.
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Under Assumption 2, let F;(0) = %I , We can construct
sequences L;(k),t > 1 and F;(k),t > 1 from

1
Lilk+1) = e D am s
Fi(k+1)= [A(k) — K(k+1)C(k + 1)A(k)] Fi (k)

x [A(k) = Li(k + 1)Ci(k + 1) A(k)] ",

A(K)S(k), (5)

(6)
where
S(k) = Fi(k)_l[A(k:) - Kk+1)C(k+ l)A(k)]_l
x Ki(k+1).
The local estimators are then defined as
Ti(k) = (A(k — 1) — Li(k)C;(k)A(k — 1))Z:(k — 1)

where Z;(k) is the local estimate with initial condition
#(0) = 2(0) = K(0)y(0).

We then can show that the Kalman estimate is a weighted
sum of the local estimate. The theorem can be proved by
simply deriving the dynamics of ) ;" F;(k)Z;(k) and show
that it is the same as that of the Kalman estimate (4).

Theorem 4: Under Assumption 2, with the designed local
estimators (7), we have that

In the following we show that we can reconstruct Z(k) in
terms of Z;(k) from a least square problem, which enables
the introduction of a secure estimation scheme in the next
section.

A. Least Square Interpretation

Let e(k) = [e1(k), ..., em(k)]) with e;(k) = Z;(k) —
x(k). Let X.(k) = E{e(k)e(k)’'}. From the definition of
e(k), we know that

#(k) = Ha(k) + e(k), (8)

where Z(k) = [Z1(k),...,Zm(k)') and H = [I',...,I'].
Define the following least square problem

1
min 5é’ze(k)*lé 9)

x,€e
st. @(k)=Hi+é

Let the optimal variables be z*, é*. Then, after some

algebraic manipulations, we can show that
Theorem 5: The solution to the least square problem (9)
is given by
" =3(k) = [Fi1(k),..., Fn.(k)]zk),
¢ = — H[F1(k),...,Fn(k)e(k).
The above least square interpretation to the Kalman fusion

leads us to the proposition of a secure estimation scheme in
the next section.
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IV. SECURE INFORMATION FUSION

In the presence of attacks, we have
ei(k+1)=(A(k) = Li(k + 1)C;(k + 1) A(k))e; (k)
+ Li(k + 1)v;(k+ 1) + Li(k + 1)a;(k + 1).
Define p;(k),v;(k) as follows
pi(k +1) = (A(k) = Li(k + 1)Ci(k + 1) A(k)) i ()
vi(k +1) = (A(k) = Li(k + 1)C;(k + 1) A(k))vi (k)
+ Li(k+ 1)a;(k+1).
Then we have
ei(k) = pi(k) + vi(k).

Therefore, in the presences of attacks, we can show that
the error e(k) can be decomposed as the error caused by
noise and the error caused by bias injected by attackers. As a
result, we proposed a LASSO based secure fusion scheme as
a counterpart to the least square problem (9), which introduce
a [y norm regularization term to promote sparsity of the
estimated attack signal.

min
Ts, sV

1 -
S Te(k) vl (10)

st., T(k)=His+p+v

Then following similar line of arguments as the proof of
Lemma 3 in [10], we have the following lemma character-
izing the solution to the optimization problem (10).

Lemma 6: Let &%, u*, v* be the minimizer to the LASSO
problem (10), and let £*, é* be the minimizer to the least
square problem (9). Then the following statements hold

« the following inequality holds
12 (&) 1" floo < -
o if |Xc(k)71e* |00 <, then

Tr=z"u"=¢e,v"=0.
Furthermore, when all the sensors are benign, in view of
Theorem 5 and Lemma 6, we have the following result.
Theorem 7: When all the sensors are benign, if the fol-
lowing conditions hold,

[Se (k)T = HIFL(K), ..., Fu(K)])e(k)l|oo < 7.

the LASSO estimate Z* gives the Kalman estimate Z(t).

The above theorem implies that a larger v is preferred,
since in the absence of attacks, a larger v can guarantee that
the secure estimate has a larger possibility to be equal to the
Kalman estimate.

Define the following operator: f; : RXxR x--- xR — R,
such that f;(B1,...,0m) equals to the i-th smallest element
in the set {f1,...,8m}. Assuming that ey,..., e, € R”
are vectors. With slightly abuse of notations, we define
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file1,...,em) as a vector where each of its entry is the
i-th smallest element among the corresponding entries in
e1,...,em. We further define f;,1/o = (fi+ fis+1)/2. When
the system is under attack, we have the following theorem.
The proof is similar to the proof of Theorem 3 in [10] and
is omitted here.

Theorem 8: Suppose that p < 3 sensors are compro-
mised, then the error of the secure state estimate is bounded
by

m

fomtyj2-p(pa (k) o pm (K)) = Y[ Ze(F)[|oo < w(k) — &5

< Somanyj24p(a (k) - s i (K)) + Y11 Ze (F)]|oo-

The above theorem implies that in the presence of attacks,

a smaller y is preferred, since a smaller y can guarantee that
the bound for the secure estimation error is smaller.

V. NUMERICAL ILLUSTRATIONS

In this section, we conduct simulations to verify the
derived results. We assume that the linear discrete-time
system (1) is obtained from sampling a continuous-time
linear process

z(t) = Ax(t),
where
1 0
A= {O 0.5} ’

and the sampling interval is 0.1s. The initial system state
covariance matrix is given by

s )

Moreover, we assume that three sensors are deployed
to measure the dynamic process, and their measurement
matrices are

Oy =[1,5),Cs = [3,-1],C3 = [1,2].

We assume that the process and measurement noise covari-
ance matrices are Q = 31, R = 41.

We consider the asynchronous measurement case. We
assume that at every sampling time, the measurement from
sensor 1 and sensor 2 are available. However, the measure
from sensor 3 are only available every 0.2s !. This models
the case that certain sensors, for example the GPS sensors,
requires small sensing and computational resources and
their measurements are available almost instantly. However,
some other sensors, such as the vision based localization
sensors, might require time for computation. Therefore, their
measurements are only available at a low frequency.

In the first simulation, we assume that the first sensor is
attacked with a; (k) = 10 for all k. Let v = 0.8 in the secure
state estimation algorithm. The estimate from the proposed
secure estimation algorithm and from the Kalman estimator
are plotted in Fig. 1.

'In the simulation, we only consider the periodic measurement case.
However, our proposed method also applies to the aperiodic measurement
case by invoking the modeling approach noted in Remark 1.
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Moreover, the accumulated estimation error defined as
Zle |lz(k) — 2(k)||* for the Kalman estimator and the
secure estimator are 42.13 and 17.71, respectively. Therefore,
in the presence of attacks, the secure estimation algorithm
provides a more reliable estimate with a smaller estimation
error as compared to the Kalman estimator.

In the second simulation, we consider two scenarios, 1)
all the sensors are benign and 2) the first sensor is under
attack and a;(k) = 10 for all k. We compute the empirical
Mean Squared Error (MSE) of the secure estimator for each
scenario and for different choices of . Define relative MSE
as the MSE of the secure state estimator divided by the MSE
of the Kalman filter without attacks. Fig. 2 is the plot of
relative MSE verses different values of ~. It is clear that
when there are no attacks, a larger v guarantees a smaller
estimation error. While in the presence of attacks, the relative
MSE achieves the minimum at around v = 0.6.

VI. CONCLUSIONS

This extended abstract studies the secure estimation prob-
lem of a time-varying linear process observed by multiple
sensors. We first propose a method to decompose the Kalman
filter using only local sensor measurements. Based on this
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decomposition, a convex optimization based secure estima-
tion scheme is proposed. The performance of this secure
estimation scheme both with and without attacks is analyzed.
In the end, simulations are conducted to verify the derived
result.
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