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Abstract— For many problems of estimation there are distur-
bances other than Gaussian noise. Also, for many applications
only some aspect of the state needs to be estimated, not the
whole state. In an H∞ estimation approach the aim is to
reduce the estimation error over all disturbances. A derivation
of H∞-output estimation in the infinite-dimensional setting is
provided. A framework for calculation using finite-dimensional
approximations is described. Output estimation is compared
with a Kalman filter for an example with disturbances.
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I. INTRODUCTION

In most systems the full state is not measured, but must
be estimated based on the available measurements. The most
well known estimation technique is the Kalman filter, which
minimizes the estimation error variance under assumptions
on the process and sensor noise. The well-posedness of
minimizing the error variance at a finite-time for distributed
parameter systems was established in [1]; see also the book
[2]. It was shown in [3] that the infinite-time Kalman filter,
which is obtained by solving an algebraic Riccati equation,
minimizes the steady-state error variance for distributed
parameter systems.

In many systems the disturbance is unknown and may not
be Gaussian noise. Then a reasonable objective is to find an
estimate with error that is small over all disturbances. This
is sometimes formulated as a minimax game problem: the
designer is trying to minimize the error while some other
player is choosing the disturbance to maximize the error.

Also, in many applications only some aspect of the state
needs to be estimated, not the whole state. The problem is
to estimate a linear combination of the states C1z where
z is the state and C1 may be an operator other than the
identity. This occurs when only some subset of the states
is of interest. Another situation where C1 may not be the
identity is when C1 is state feedback, and the estimator is
to be combined with state feedback to construct an output
feedback controller.

The relationship between design for what is known as the
full control problem and the estimation problem has been
used in the development of an output feedback controller
for H∞ control; see [4] for the finite-dimensional result and
[5] for the extension to infinite-dimensions. The full control
problem is used to find a good estimate of Kz where K is
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the state feedback that solves the full information problem. It
is assumed in the development that A−B2K is exponentially
stable, which is reasonable when K is designed as state
feedback. However, estimation without control is sometimes
of interest. Estimation in the H∞ context without control
was shown for finite-dimensional systems in [6]; see also
the tutorial article [7].

In this talk a solution to estimation for infinite-dimensional
systems with unknown disturbances is presented. A frame-
work for calculation of a sub-optimal estimator using finite-
dimensional approximation is described. The approach is
illustrated with an example.

II. PROBLEM FORMULATION

Let v indicate all external disturbances and write the
system as

ż(t) = Az(t) +B1v(t), z(0) = 0

y1(t) = C1z(t) + u(t)

y2(t) = C2z(t) +D21v(t)

(OE)

where z is the state, A with domain D(A) generates a
strongly continuous semigroup S(t) on a Hilbert space Z ,
and B1 ∈ L(U1,Z), C1 ∈ L(Z,Y1) , C2 ∈ L(Z,Y2)
where L(U1,Z) indicates bounded linear operators from
a separable Hilbert space U1 to Z . The disturbance term
v is generally due to uncontrolled inputs, such as process
noise and sensor noise, but sometimes modelling errors are
regarded as disturbances to the model. The goal is to find
an estimate ẑ(t) of the state z(t), so that C1(z(t)− z̃(t)) is
small, based only on external signals y2, v and the model
(OE).

Finding an estimate for C1z(t) using only the measure-
ments y2(t) can be formulated as finding u(t) so that y1(t)
is as small as possible. Then u(t) will be an estimate of
−C1z(t). The problem is thus to find a system H so that
with u(s) = H(s)y2(s); the output y1 of (OE) satisfies, for
some desired error γ > 0,

sup
v∈L2(0,∞;V)

‖y1‖2 < γ. (1)

This corresponds to the H∞-norm of the transfer function
from v to y1 being less than γ and so this approach is
referrred to as H∞-estimation.

The estimation problem is closely related to the full control
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problem

ż1(t) = Az(t) +B1v(t) +
[
I 0

]
ṽ(t), z(0) = 0

y1(t) = C1z1(t) +
[
0 I

]
ṽ(t)

y2(t) = C2z1(t) +D21v(t).

(FC)

The two systems differ only in the effect of the controlled
input u (or ũ) on the state and on the cost y1.

Theorem 1: Consider the output estimation problem (OE)
and the full control problem (FC).

1) The map from v to y1 of the output estimation system
with control u is equal to that of the full control system
with control

ṽ =

[
0
I

]
u.

2) The map from v to y1 of the full control problem
(FC) is equal to that of the output estimation system
connected to the following system

że(t) = Aze(t) +
[
I 0

]
ṽ(t) ze(0) = 0,

u(t) = C1ze(t) +
[
0 I

]
ṽ(t)

ỹ(t) = C2ze(t) + y2(t).

(P)

Proof: The approach is similar to the intermediate step
of constructing an output feedback controller; see [4] or
[8, chap. 8] for the finite-dimensional case and [5] for the
infinite-dimensional development.

Statement (1) follows from simple substitution.
Consider then statement (2). Eliminating the intermediate

variables u(t) and y2(t) the system (OE) connected to (P) is[
ż(t)
że(t)

]
=

[
A 0
0 A

] [
z(t)
ze(t)

]
+

[
B1

0

]
v(t) +

[
0 0
I 0

]
ṽ(t)

y1(t) =
[
C1 C1

] [ z(t)
ze(t)

]
+
[
0 I

]
ṽ(t)

ỹ(t) =
[
C2 C2

] [ z(t)
ze(t)

]
+D21v(t).

The state space for this system is Z × Z . The generator is[
A 0
0 A

]
with domain D(A)×D(A).

Only the sum z + ze affects y1 and ỹ. Define a new

state z̃ =

[
z + ze
ze

]
, on the same state space. The system

description has the same generator, but is now

˙̃z(t) =

[
A 0
0 A

]
z̃(t) +

[
B1

B1

]
v(t) +

[
I 0
I 0

]
ṽ(t)

y1(t) =
[
C1 0

]
z̃(t) +

[
0 I

]
ṽ(t)

ỹ(t) =
[
C2 0

]
z̃(t) +D21v(t).

Thus, the second component ze is unobservable and does not
affect y1 or ỹ. The map from ṽ to ỹ is the same as that of

ż1(t) = Az1(t) +B1v(t) +
[
I 0

]
ṽ(t)

y1(t) = C1z1(t) +
[
0 I

]
ṽ(t)

ỹ(t) = C2z1(t) +D21v(t).

This is the full control system (FC). Thus, with zero initial
conditions and the same disturbance v and control signal ṽ,

the full control system (FC) will have the same output y1 as
the connected systems (OE), (P).

Theorem 1 implies that if a suitable controller is found for
the full control problem (FC) a controller can be constructed
with the same closed loop input-output map for the output
estimation problem (OE). Letting A∗ with domain D(A∗)
indicate the adjoint operator of A, and indicating similarly
the adjoint operators of B1,C1, C2, D21, the full control
problem is dual to the full information problem

ż(t) = A∗z + C∗1v(t) + C∗2u(t), z(0) = 0

y1(t) = B∗1z(t) +D∗21u(t)

y2(t) =

[
I
0

]
z(t) +

[
0
I

]
v(t).

(FI)

Thus the solution to the full control problem follows im-
mediately from that for full information. This duality and
Theorem 1 can be used to construct an estimator u for the
original problem OE.

III. ESTIMATOR DESIGN

A result for synthesis of an estimator with the desired
estimation error over all disturbances is presented here. It
will be assumed that[

D21

B1

]
D∗21 =

[
I
0

]
(2)

in order to simplify the formulae. As long as D21 has full
row rank, a transformation can be used to put the problem
into this form.

Theorem 2: Assume that (A,B1) is stabilizable and
(A,C2 is detectable. There is an estimate of C1z so that
the error satisfies (1) if and only if there is a solution Π ≥ 0
of

ΠA∗ +AΠ + Π

(
1

γ2
C∗1C1 − C∗2C2

)
Π +B1B

∗
1 = 0 (3)

such that A+ Π
(

1
γ2C

∗
1C1 − C∗2C2

)
generates an exponen-

tially stable semigroup. Defining F = Π2C
∗
2 , the optimal

estimate u is

że(t) = (A− FC2)ze(t)− Fy2(t), ze(0) = 0,

u(t) = C1ze(t)
(4)

Proof: From Theorem 1, there is an estimator that
achieves H∞-norm less than γ if and only if there is a
controller for the full control problem (FC) with H∞- atten-
uation less than γ. The full control problem is dual to the full
information problem and so there is a control that achieves
such attenuation if and only if there is a solution to (3) such
that A + Π

(
1
γ2C

∗
1C1 − C∗2C2

)
generates an exponentially

stable C0-semigroup [5, Thm. 4.4]. Moreover, again using
duality, and defining F = ΠC∗2 , A − FC2 generates an
exponentially stable C0-semigroup and a suitable controller
for the full control problem is the feedback F = ΠC∗2 . From
Theorem 1, connecting this controller to the auxiliary system
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(P) will yield H∞-error less than γ for output estimation.
This leads to

że(t) = Aze(t) +
[
I 0

]
ṽ(t)

u(t) = C1ze(t) +
[
0 I

]
ṽ(t)

ỹ(t) = C2ze(t) + y2(t)

ṽ(t) =

[
−ΠC∗2

0

]
ỹ(t).

Eliminating ṽ from the first equation yields (4).
Unlike minimum variance estimation, the definition of the

output C1z affects the design of an H∞-estimator. Also, a
Kalman filter is designed to minimize the error variance for
a single disturbance, white noise, while the H∞-estimator is
designed to minimize the error over all disturbances. In this
respect, an H∞-estimator is more robust.

As the desired error γ → ∞, the Kalman filter is
recovered.

IV. COMPUTATION

In practice a finite-dimensional system is used to esti-
mate the original infinite-dimensional system. Provided that
a suitable approximation scheme is used, estimation error
arbitrarily close to that of the full infinite-dimensional system
can be obtained.

Suppose the approximation lies in some finite-dimensional
subspace Zn of the state-space Z , with an orthogonal
projection Pn : Z → Zn where for each z ∈ Z ,
limn→∞ ‖Pnz−z‖ = 0. The space Zn is equipped with the
norm inherited from Z . Define Bn = PnB, Cn = C|Zn ( the
restriction of Cn to Zn) and define An ∈ L(Zn,Zn) using
some method. This leads to a sequence of finite-dimensional
approximations

dz

dt
= Anz(t) +Bnu(t), z(0) = Pnz0,

y(t) = Cnz(t).

Let Sn indicate the semigroup generated by An.
Definition 3: The control systems (An, Bn) are uniformly

stabilizable if there exists a sequence of feedback operators
{Kn} with ‖Kn‖ ≤ M1 for some constant M1 such that
An−BnKn generate SKn(t), ‖SKn(t)‖ ≤M2e

−α2t, M2 ≥
1, α2 > 0.

Definition 4: The control systems (An, Cn) are uniformly
detectable if there exists a sequence of operators {Fn} with
‖Fn‖ ≤ M1 for some constant M1 such that An − FnCn
generate SKn(t), ‖SKn(t)‖ ≤M2e

−α2t, M2 ≥ 1, α2 > 0.
It is easy to show that if the original problem is expo-

nentially stabilizable (detectable), and the eigenfunctions of
A form an orthonormal basis for Z , then an approximation
scheme formed using the first n eigenfunctions is uni-
formly stabilizable (detectable). However, in practice other
approximation methods, such as finite-elements are typically
used. Many such approximations, such as linear splines for
the diffusion equation and cubic splines for damped beam
vibrations are uniformly stabilizable (detectable), provided
that the original system is stabilizable (detectable) [9, Thm.
5.2,5.3].

Theorem 5: Assume that
• For each z ∈ Z , and all intervals of time [t1, t2]

lim
n→∞

sup
t∈[t1,t2]

‖Sn(t)Pnz − S(t)z‖ = 0,

lim
n→∞

sup
t∈[t1,t2]

‖S∗n(t)Pnz − S∗(t)z‖ → 0;

• For all u ∈ U , y ∈ Y , ‖C∗1ny − C∗1y‖ → 0 and
‖B∗nPnz −B∗z‖ → 0;

• C1 and C2 are compact operators.
• (An, B1n) are uniformly stabilizable and (An, C2n) are

uniformly detectable;
If there is an estimator for the original problem (OE) that
achieves estimation error less than γ, then for sufficiently
large n the finite-dimensional Riccati equation

ΠnA
∗
n +AnΠn + Πn

(
1

γ2
C∗1nC1n − C∗2nC2n

)
Πn

+B1nB
∗
1n = 0

has a nonnegative, self-adjoint solution Πn such that
1) the semigroup Sn2(t) generated by An +

Πn( 1
γ2C

∗
1nC1n − C∗2nC2n) is uniformly exponentially

stable; that is, there exist positive constants M1 and
ω1 with ‖Sn2(t)‖ ≤M1e

−ω1 t;
2) Defining Fn = ΠnC

∗
2n, the semigroups SnK(t) gener-

ated by An + FnC2n are uniformly exponentially sta-
ble; that is, there exists M2, ω2 > 0 wiith ‖SnK(t)‖ ≤
M2e

−ω2t.
3) As n → ∞, for all z ∈ Z , ΠnPnz → Πz where Π

solves (3) and also Fn converges to F = ΠC∗2 in norm.
4) The the optimal H∞-estimation error γ̂n for the ap-

proximating system converges to the optimal estima-
tion error γ̂ for (OE); that is,

lim
n→∞

γ̂n = γ̂.

5) For sufficiently large n, Fn provides estimation error
less than γ when used in the estimator (4).

Proof: Convergence of the optimal feedback and per-
formance for the full information problem is in [10, Thm.
2.5,2.8]. The conclusions then follow by duality with the full
control problem (FC) and Theorem 1.

In the talk, this approach will be illustrated with an
example and comparison with a Kalman filter.
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