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Abstract— A standard max-plus eigenvector method arising
in nonlinear optimal control is encapsulated within a basis
function adaptation iteration. A level set corresponding to the
target Hamiltonian back-substitution error is estimated at each
step, using the value function approximation obtained by the
eigenvector method. This estimate is used to construct and add
new functions to the basis employed by the eigenvector method,
with the objective of enlarging the target level set iteratively.
The utility of the ensuing iteration is illustrated by example.
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I. INTRODUCTION

The standard max-plus eigenvector method of [1] exploits
attendant max-plus linearity, semiconvexity, and semigroup
properties of dynamic programming to provide an algebraic
representation for the value function associated with a con-
tinuous time nonlinear optimal control problem. This repre-
sentation corresponds to the coordinate vector defined by the
value function with respect to a countably infinite basis of
an infinite dimensional vector space of semiconvex functions.
The basis involved consists of quadratic functions, defined
on the state space, whose locations form a dense set. A finite
cardinality truncation of this basis yields an approximation
of the value function, and it is this approximation that is
generated by the standard numerical method of [1].

In truncating the basis as indicated, the user imposes an
a priori choice of basis function locations. This yields a
value function approximation that is defined with respect
to that choice. In this paper, the process of choosing these
basis function locations is addressed in an adaptive way by
exploiting the dependence of the a posteriori value function
approximation error, defined with respect to the associated
Hamiltonian, on these locations. In particular, given an initial
finite cardinality set of basis functions, the standard max-plus
eigenvalue vector method is applied to yield a value function
approximation. This value function approximation is used to
identify a Voronoi tessellation of an approximation for the
target level set of the Hamiltonian, in which each convex
polytope corresponds to the set of states for which a basis
function is active. Elements of this tessellation, and hence
individual basis functions, are identified that correspond to
the worst case Hamiltonian, and new basis functions added
in directions that improve this worst case. Unused basis
functions are pruned, and the basis updated. The algorithm
proceeds iteratively, with the standard max-plus eigenvector
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method applied at each step to the adapted basis. Its operation
is illustrated by example.

In terms of organization, the optimal control problem and
corresponding max-plus eigenvector method developed for
its solution [1] is recalled in Sections II and III. The proposed
iterative basis adaptation is reported in Section IV, along with
its application by simple example in Section V. A very brief
summary of conclusions is provided in Section VI.

Throughout, N and Z denote the natural numbers and
integers respectively, while R, Rě0, R .

“ RYt´8uYt`8u
denote the real numbers, non-negative reals, and extended
reals. Rn denotes Euclidean space of dimension n P N. The
inner product and norm on Rn are denoted respectively by
x , y and | ¨ |, and an open ball of radius r P Rą0, centred
at x P Rn, is denoted by Bpx; rq. Matrices with real entries
and dimensions n,m P N are denoted by Rnˆm. The set
of self-adjoint matrices in Rnˆn is denoted by Σ (with the
dependence on n suppressed), and the subset of matrices
positive definite relative to M P Σ is

ΣąM
.
“ tP P Σ |P ´M ą 0u.

An extended real-valued function is (lower) closed convex
if it is either the constant function ´8, or it is lower
semicontinuous, convex, and maps into R Y t`8u. It is
(upper) closed concave if its additive inverse is (lower) closed
convex. ψ : Rn Ñ R is semiconvex (resp. semiconcave) if
there exists a K P Σ such that x ÞÑ ψpxq ` 1

2xx, K xy is
closed convex (x ÞÑ ψpxq ´ 1

2xx, K xy is closed concave).
The space of semiconvex (semiconcave) functions on Rn is
denoted by SK

` (SK
´ ).

The max-plus algebra [1], [2], [3] is an idempotent
semifield over R equipped with addition and multiplication
operations defined by

a‘ b
.
“ maxpa, bq, ab b

.
“ a` b,

for all a, b P R. A max-plus vector space is a vector space
over the max-plus algebra, and is referred to as a moduloid
or idempotent semimodule [2], [3]. Given any K P Σ, the
corresponding space SK

` of semiconvex functions is a max-
plus vector space. The max-plus integral of an extended real-
valued function f : Ω Ă Rn Ñ R is defined by

ş‘

Ω
fpxq dx

.
“

supxPΩ fpxq.
Given Banach spaces X , Y with norms | ¨ |X , | ¨ |Y , a

function f : X Ñ Y is Fréchet differentiable at x P X ,
with Fréchet derivative Dxfpxq P LpX ; Y q, if

0 “ lim
|h|XÑ0

|fpx` hq ´ fpxq ´Dxfpxqh|Y
|h|X

.

23rd International Symposium on Mathematical Theory of Networks and Systems
Hong Kong University of Science and Technology, Hong Kong, July 16-20, 2018

350



The space of all k-times continuously Fréchet differentiable
functions on Ω Ă X is denoted by CkpΩ; Y q, k P N.
The corresponding derivatives are denoted by Dk

xfpxq P
LppX qk; Y q, in which pX qk

.
“ pX qk´1 ˆ X , k P N.

Where X is a Hilbert space and Y
.
“ R, the Fréchet

derivative satisfies Dxfpxqh “ xh,∇xfpxqyX , in which
∇xfpxq PX denotes its Riesz representation.

II. OPTIMAL CONTROL PROBLEM

Attention is restricted to finite dimensional continuous
time nonlinear optimal control problems of the form consid-
ered in [1]. The infinite horizon value function W : Rn Ñ
R of interest is defined with respect to its finite horizon
counterpart Wt : Rn Ñ R and the underlying dynamic
programming evolution operator St, for any t P Rě0, by

W pxq
.
“ sup

tě0
Wtpxq “ lim

tÑ8
Wtpxq, Wtpxq

.
“ rSt Ψ0spxq,

rSt ψspxq
.
“ sup
wPW r0,ts

"
ż t

0

lpxsq ´
γ2

2 |ws|
2 ds` ψpxtq

*

(1)

for all x P Rn. Here, Ψ0 : Rn Ñ R denotes the zero terminal
payoff, i.e. Ψ0pxq

.
“ 0 for all x P Rn, while W r0, ts

.
“

L2pr0, ts;Rmq denotes the input space. Trajectories of the
nonlinear dynamics underlying (1), each denoted with an
abuse of notation by s ÞÑ xs, s P r0, ts, are defined with
respect to an initial state x P Rn and input w P W r0, ts by

xs
.
“ rχpx,wqss

.
“ x`

ż s

0

fpxrq ` σ wr dr. (2)

Standard assumptions [1, p.59] restrict the problem data
f : Rn Ñ Rn, σ P Rnˆm, l : Rn Ñ R throughout. For
simplicity, Q .

“ σ σ1 is assumed invertible, i.e. Q P Σą0. The
gain parameter γ P Rě0 is assumed fixed a priori sufficiently
large such that W is proper. The value functions Wt and W
of (1) are semiconvex [1], and are unique viscosity solutions
of the respective non-stationary and stationary Hamilton-
Jacobi-Bellman (HJB) PDEs

0 “
BWt

Bt
pxq `Hpx,∇xWtpxqq, W0pxq “ Ψ0pxq,

0 “ Hpx,∇xW pxqq, W p0q “ 0, (3)

for all t P Rě0 and x P Rn, in which H : Rn ˆ Rn Ñ R is
the (completed squares) Hamiltonian

Hpx, pq
.
“ ´lpxq ´ xp, fpxqy ´ 1

2γ2 xp, σ σ
1 py (4)

for all x, p P Rn.

III. MAX-PLUS EIGENVECTOR METHOD [1]
A max-plus eigenvector method for the infinite horizon

problem (1) was developed in [1], and provides the founda-
tion of the adaptive algorithm proposed in the sequel. It relies
on the dynamic programming evolution operator preserving
semiconvexity on short time horizons.

Assumption 3.1: There exists an invertible M P Σ and a
τ˚0 P Rą0 such that Sτ : S ´M

` Ñ S ´M
` for all τ P r0, τ˚0 s.

This property, combined with max-plus linearity of the
dynamic programming evolution operator, admits the de-
velopment of max-plus fundamental solution semigroups

for optimal control problems of the form (1), see [4], [5],
[6], [7], [8]. The max-plus dual space fundamental solution
semigroup, denoted by tB‘t utPRě0 , is key to the max-plus
eigenvector method of interest here, see for example [7]. An
element B‘t of this semigroup is a max-plus linear max-plus
integral operator, given by

B‘t a
.
“

ż ‘

Rn
Btp¨, zq b apzq dz, (5)

for all a P dompB‘t q. Specifically, the kernel Bt involved is
defined with respect to the semiconvex dual Dϕ : S ´M

` Ñ

S ´M
´ of an auxiliary value function St ϕp¨, zq, z P Rn, by

Btpy, zq
.
“ rDϕ St ϕp¨, zqspyq (6)

for all y, z P Rn, in which St is as per (1), and

Dϕ ψ
.
“ ´

ż ‘

Rn
ϕpx, ¨q b r´ψpxqs dx, (7)

ϕpx, zq
.
“ 1

2 xx´ z, Mpx´ zqy (8)

for all x, z P Rn, ψ P S ´M
` . The set of quadratic support

functions tψiuiPN, with elements ψi : Rn Ñ R defined by

ψi
.
“ ϕp¨, ziq, (9)

with respect to a (countable) dense set tziuiPN Ă Rn,
forms a basis for S ´M

` , see [1, Theorem 2.13, p.20].
Under Assumption 3.1, as the value function Wt of (1) is
semiconvex, it may be shown [5], [7] for fixed τ P p0, τ˚0 s
that

Wkτ “ D´1
ϕ ak, ak

.
“ B‘τ ak´1, a0

.
“ Dϕ Ψ0, (10)

for all k P NY t0u, in which D´1
ϕ : S ´M

´ Ñ S ´M
` is the

inverse semiconvex transform, defined for all a P S ´M
´ by

D´1
ϕ a

.
“

ż ‘

Rn
ϕp¨, zq b apzq dz. (11)

Defining reksi
.
“ akpziq to be the ith element of an infinite

dimensional vector ek, for all i, k P N, (10) yields

reksi “ rB‘τ ak´1spziq “

ż ‘

Rn
Bτ pzi, zq b ak´1pzq dz

“
à

jPN
Bτ pzi, zjq b ak´1pzjq

“
à

jPN
Bτ pzi, zjq b rek´1sj “ rBτ b ek´1sj , (12)

in which Bτ denotes both the kernel of B‘τ and its represen-
tation as a compatibly dimensioned square matrix, defined
element-wise by rBτ sij

.
“ Bτ pzi, zjq for all i, j P N.

Combining (7), (10), (11), (12) yields an exact representation
for the infinite horizon value function W of (1), with

W “
à

iPN
ψip¨q b re8si, e8

.
“ lim
kÑ8

ek,

ek “ Bτ b ek´1, re0si “ rDϕ Ψ0spziq, i P N.
(13)
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Truncating the basis tψiuiPN to finite cardinality ν P N yields
an approximation xW for the value W , given by

xW “

ν
à

i“1

ψip¨q b rpe8si, pe8
.
“ lim
kÑ8

pek,

pek “ Bτ b pek´1, rpe0si “ rDϕ Ψ0spziq, i P Nďν ,
(14)

which is precisely the max-plus eigenvector method of [1].
Remark 3.2: As one basis function must be centred at the

origin, see [1, Lemma 4.20, p.77], it is useful to label z1
.
“ 0.

Subsequently, the same lemma requires that rBτ s11 “ 0.

IV. BASIS ADAPTATION

The max-plus eigenvector method (14), as reported in [1],
assumes an a priori fixed basis B

.
“ tψiuiPNďν of ν P N

elements centred at a priori fixed locations tziuiPNďν . The
objective here is to identify a process by which such a
basis can be adapted iteratively, by adding and pruning basis
functions, so as to yield an improved approximation of the
value function (1) via (14) at each step. A Hamiltonian back-
substitution error inferred from (3), (4) is used as the means
for evaluating the quality of these approximations point-wise.
It is assumed that an initial basis B0 of cardinality ν0 P N
and a bounded convex polytope Y 0 Ă Rn are given, subject
to some minor assumptions to be detailed in the development
that follows. For convenience, quantities associated with the
kth adapted basis are denoted with a superscript k. Initial
values correspond to k “ 0.

A. Value function approximation and Voronoi tessellation

Each iteration is initialized with a basis Bk of cardinality
νk P N, and a bounded convex polytope Y k Ă Rn. The
max-plus eigenvector method [1] applied to this basis yields
an approximation (14) of the value function (1) given by

xW kpxq
.
“

νk
à

i“1

ψki pxq b rpe
k
8si, (15)

in which pek8 is the limit of the corresponding idempotent
iteration in (14). Evaluation of (15) via the ‘ operation
indicates that basis function ψki P Bk is active at x P Y k

if ψki pxq ` rpe
k
8si ą ψkj pxq ` rpe

k
8sj for all j P Nďνkztiu.

Consequently, recalling (8), (9), the set Y k
i Ă Y on which

ψki is active in (14) is

Y k
i

.
“

"

x P Y k

ˇ

ˇ

ˇ

ˇ

Γkijpxq ą 0 @ j P Nďνkztiu
*

, (16)

Γkijpxq
.
“ xx, Mpzkj ´ z

k
i qy ` rpe

k
8si `

1
2 xz

k
i , M zki y

´
“

rpek8sj `
1
2 xz

k
j , M zkj y

‰

.

Given i P Nďνk , the set Y k
i is the interior of the intersection

of a family of half-spaces. Its closure Y k
i is hence a convex

polytope, with a finite set of vertices denoted for convenience
by V pY k

i q Ă Y k. The union of these convex polytopes
over i P Nďνk is the whole set Y k, so that together they
define a Voronoi tessellation T k .

“ tY k
i uiPNďνk of Y k. The

(possibly empty) set Bk
´ Ă Bk of basis functions not used in

the approximation (15) are identified by way of the volume

of their associated convex polytopes. These are pruned from
the basis in the subsequent considerations, via

Bk
7

.
“ Bk zBk

´, (17)

with the resulting cardinality being denoted by νk7 P Nďνk .

B. Hamiltonian back-substitution error

A Hamiltonian back-substitution error [9] may be defined
by substitution of the value function approximation (15) back
into the Hamiltonian (4). To this end, given any i P Nďνk

7

for which the corresponding convex polytope Y k
i must be

nonempty by (17), observe by (15) that

xW kpxq “ ψki pxq ` rpe
k
8si (18)

∇x
xW kpxq “ ∇x ψ

k
i pxq “Mpx´ zki q

for any x P Y k
i . Consequently, the Hamiltonian back-

substitution error applicable on Y k
i may be defined on all

of Y k by hp¨, zki q : Y k Ñ R via (4) by

hpx, zki q
.
“ Hpx,∇xψ

k
i pxqq (19)

for all x P Y k. Observe by the boundedness of Y k that there
exists an r P Rą0 such that Y k

i Ă Y k Ă B0prq. Hence,
applying [1, Theorem 5.16, p.120], there exists a τ˚ P p0, τ˚0 s
such that the auxiliary finite horizon value function defined
by W ki

t pxq
.
“ pSt ψki qpxq for all t P Rě0, x P Y k, satisfies

W ki
t P C2pp0, τ˚q ˆ Y k;Rq. Meanwhile, Assumption 3.1

requires that W ki
t P S ´M

` for all t P r0, τ˚s, so that (9) and
the definition of S ´M

` imply that W ki
t ´ ψi “W ki

t ´W ki
0

is convex for all t P r0, τ˚s. Consequently, limtÑ0`pW
ki
t ´

W ki
0 q{t “ limtÑ0`

BWki
t

Bt : Y k Ñ R exists and is convex.
Furthermore, W ki

t satisfies a non-stationary HJB analogous
to (3), everywhere on Y k, with

0 “
BW ki

t

Bt
pxq `Hpx,∇xW

ki
t pxqq

for all x P Y k, t P r0, τ˚s. In particular,

hpx, zki q “ Hpx,∇xψ
k
i pxqq “ ´ lim

tÑ0`

BW ki
t

Bt
pxq.

for all x P Y k, so that hp¨, zki q must be concave on Y k.
Theorem 4.1: Given Assumption 3.1, and any i P Nďνk

7
,

the Hamiltonian back-substitution error hp¨, zki q : Y k Ñ R
of (19) is concave, and hp¨, zki q achieves its minimum on Y k

i

at a vertex of Y k
i .

Remark 4.2: For sufficiently smooth f , l in (2), (4),
hp¨, zki q is concave on Y k if and only if its second Fréchet
derivative D2

x hpx, z
k
i q P LpRnˆRn;Rq is negative semidef-

inite for all x P Y k, [10, Theorem 2.14, p. 47]. For example,
with lpxq .“ 1

2 xx, C
1C xy, C 1C P Σě0, for all x P Rn,

D2
xhpx, z

k
i qhh “ ´xh,Πpx, z

k
i qhy

with Πpx, zki q P LpRn;Rnq ” Rnˆn given by

Πpx, zki q
.
“ C 1C `M ∇xfpxq `∇xfpxq

1M

` 1
γ2 M σ σ1M `

n
ÿ

j“1

rMpx´ zki qsj ∇xxfjpxq,
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in which fjpxq denotes the jth entry of fpxq P Rn,

∇xfpxq
.
“ r∇xf1pxq ¨ ¨ ¨ ∇xfnpxqs

1 P Rnˆn,
∇xxfjpxq

.
“ Dx∇xfjpxq P Σ Ă LpRn;Rnq,

and ∇xfjpxq P Rn denotes the Riesz representation of the
Fréchet derivative of the jth component of f , for all x P Rn.
Non-negativity of Πp¨, zki q may be checked directly, given f ,
M , and zki . In the linear case, i.e. fpxq .“ Ax, A P Rnˆn,
Πpx, zki q is independent of x, zki P Rn, with

Πpx, zki q “ ΓpMq
.
“ A1M `M A` 1

γ2M σ σ1M ` C 1C.

The bounded real lemma subsequently implies existence of
an M P Σ such that ΓpMq P Σą0, see for example [11]. ˝

The definition of Hamiltonian back-substitution error (19)
extends in an obvious way to hk :

Ť

iPN
ďνk
7

Y k
i Ñ R, with

hkpxq
.
“ lim inf

ξÑx

νk7
ÿ

i“1

hpξ, zki q ι
k
i pξq, (20)

in which h is as per (19), and ιki : Y k Ñ t0, 1u denotes the
indicator function defined with respect to Y k

i Ă Y k.

C. Hamiltonian back-substitution error level sets

Let δH P Rą0 denote the target Hamiltonian back-
substitution error (20) for the iteration. Recall that basis Bk

contains a basis function ψk1 centred at zk1
.
“ 0, see Remark

3.2. It is straightforward to show that the corresponding
polytope Y k

1 Ă Y 0 must contain zk1 , and that hp0, zk1 q “ 0.
By the asserted smoothness of hp¨, zk1 q, note further that
∇xhp0, z

k
1 q “ 0, see Remark 4.2. Hence, the asserted

concavity in Theorem 4.1 implies that hp¨, zk1 q achieves its
maximum at 0 P Y k

1 , and hpx, zk1 q ď 0 for all x P Y k Ą

Y k
1 . Consequently, there exists an rk1 P Rą0 such that

´δH ď hpx, zk1 q ď 0 (21)

for all x P Bp0; rk1 q Ă Y k
1 . If the left-hand inequality in (21)

holds at the vertices of Y k
1 , then it holds for all x P Y k

1 .
In view of (21), it is useful to consider Hamiltonian

back-substitution level sets defined with respect to all basis
functions. To this end, define

Λk
.
“

ď

iPN
ďνk
7

Λki , (22)

Λki
.
“ tx P Y k

i | ´ δH ď hpx, zki qu, (23)

for i P Nďνk
7

. As hp¨, zki q is concave, Λki is convex, and so

Λki ” Y k
i ðñ ´δH ď hpv, zki q @ v P V pY k

i q. (24)

By inspection of (15), (18), (19), (20), (23), Λk corresponds
to the back-substitution error level set defined with respect
to the value function approximation xW k and δH . That is,

Λk ” tx P Y k | ´ δH ď Hpx,∇x
xW kpxqqu. (25)

Although Λk is the closure of a union of convex sets, it
need not be convex, or indeed even connected. However,
(21) implies that there always exists an rk P Rą0 satisfying

rk ě rk1 such that Bp0; rkq Ă Λk. Upper and lower bounds
Rk and rk for the maximal such ball radius inside Λk can
be estimated via (24) and a partitioning of the tessellation
T k. To this end, define the set Ωki , i P Nďνk

7
, by

Ωki
.
“

"

pr, hq P Rą0 ˆ R
ˇ

ˇ

ˇ

ˇ

r
.
“ |v|, h

.
“ hpv, zki q,

v P V pY k
i q

*

,

with a lexicographical ordering pr1, h1q ĺ pr2, h2q for all
pr1, h1q, pr2, h2q P Ωki satisfying r1 ď r2. Using the ensuing
definitions of min and max on Ωki , define the subsequent
per-polytope radius bounds rki and Rki by

rki
.
“ arg max

rPRą0

tpr, hq P Ωki | ´ δH ď hu,

Rki
.
“ arg min

rPRą0

tpr, hq P Ωki | ´ δH ą hu,
(26)

in which conventions arg maxH
.
“ ´8 and arg minH

.
“

`8 are adopted. Subsequently, a vertex v is referred to
as either within tolerance if ´δH ď hpv, zki q, or outside
tolerance if ´δH ą hpv, zki q. The bounds (26) define
a disjoint partition of tessellation T k, according to this
classification, with

T k “ |T k Y ĂT k Y xT k, (27)
|T k .“ tY k

i uiPqIk ,
ĂT k .“ tY k

i uiPrIk ,
xT k .“ tY k

i uiPpIk ,

in which the cited polytope index sets are given by

qIk .
“ ti P Nďνk

7
| rki ą ´8, R

k
i “ 8u, [inside tol.]

rIk .
“ ti P Nďνk

7
| rki ą ´8, R

k
i ă 8u, [mixed]

pIk .
“ ti P Nďνk

7
| rki “ ´8, R

k
i ă 8u. [outside]

(28)

Note that as the sets defining the bounds (26) cannot both be
empty, a fourth case in (28) is unnecessary. As indicated, the
three cases listed correspond respectively to those polytopes
with all vertices inside tolerance, those with some vertices
inside and some outside tolerance (mixed), and those with all
vertices outside tolerance. As hp¨, zki q achieves its minimum
on Y k

i at a vertex, polytopes may also be referred to as
inside, mixed, or outside tolerance. It is convenient to assume
that the polytope Y k

1 associated with the basis function ψ1

centred at k is always inside tolerance.
Assumption 4.3: Y k

1 Ă |T k.
In view of (26) and (27), upper and lower bounds Rk and

rk on the maximal such ball radius inside Λk are thus

Rk
.
“ mintRki | i P

rIk Y pIku,
rk

.
“ maxtrki | i P

qIk, rki ă Rku.
(29)

(Assumption 4.3 implies that rk P Rą0.) Together, these
radii define an annulus A k .

“ Bp0;Rkq zBp0; rkq ‰ H.
Consideration of polytopes with vertices within A k, and in
particular how their associated Hamiltonian back-substitution
error can be improved, forms the foundation of the basis
adaptation iteration to follow.
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D. Basis adaptation iteration

By definition, the annulus A k contains vertices belonging
to polytopes that are either inside tolerance or mixed toler-
ance. It does not contain vertices of polytopes that are outside
tolerance. That is, every polytope with a vertex in A k is ei-
ther within tolerance, or has at least one vertex that is outside
tolerance. The set of all such outside tolerance vertices can
be ordered according to their Hamiltonian back-substitution
error, and a vertex pvki P Y k

i furthest from tolerance identi-
fied. A parent polytope Y k

i , and corresponding existing basis
function ψki , may subsequently be identified. As the auxiliary
back-substitution error function z ÞÑ hppvki , zq defined via
(19) is concave and depends smoothly on z, the location
z “ pzki of a prospective new basis function can be propagated
from zki to improve the expected back-substitution error.
If this expected error is within tolerance, the prospective
basis function is reserved for subsequent inclusion in the
basis. This is repeated for an a priori fixed number of worst
case vertices, yielding a set of new basis functions Bk

` to
be added to Bk

7 . A replacement for the bounded convex
polytope Y k involved is also identified as the largest convex
polytope, with a priori fixed number of vertices, that is within
the outer level set approximation Bp0;Rkq. The adaptation
thus proceeds via the basis and polytope update steps

Bk`1 .
“ Bk

7 YBk
` “ pB

k zBk
´q YBk

`,

Y k`1 .
“ co pBqp0;Rkq,

(30)

in which co denotes the convex hull, and pBq is a star shaped
neighbourhood defined with respect to q P N by

pBp0; rq
.
“

!

ρ pv
ˇ

ˇ

ˇ
pv P pVq, ρ P r0, rs

)

,

pVq
.
“ tpvj P Rn | |pvj | “ 1, j P Nďqu.

Within the basis update step in (30), propagation of a basis
function location from z “ pzki to a new location rzki is
achieved for each i P Nďνk

7
via integration of the ODE

rzki
.
“ ζη` ,

#

9ζη “ F ki pζηq, η P Rě0,

ζ0 “ zki ,
(31)

in which F and η` P Rą0 remain to be specified. With
the intention of applying steepest ascent, recall by (8), (9),
(19) that hppvk, zq “ Hppvk, pppvk, zqq, in which ppv, zq

.
“

Mpv ´ zq. Hence, applying the chain rule via (4) yields

∇zhppv
k
i , zq “M rfppvki q `

1
γ2 σ σMppv

k
i ´ zqs (32)

which is in the steepest ascent direction for hppvk, ¨q. As
hppvk, ¨q is concave, and Q

.
“ σ σ1 P Σą0 is invertible, a

maximizer for hppvk, ¨q always exists. Indeed, by completion
of squares and invertibility of M P Σ,

max
zPRn

hppvki , zq “ ´
1
2 |C pvki |

2 `
γ2

2 |Q
´ 1

2 fppvki q|
2,

which may be positive, particularly for vertices located away
from the origin. Hence, (32) is modified by the sign of

the back-substitution error, and approximately normalized,
to yield a candidate F ki for use in (31), given by

F ki pζq
.
“ sgnphppvki , ζqq

∇zhppv
k
i , ζq

|∇zhppvki , ζq| ` ε
, (33)

for some a priori fixed ε P Rą0. The stopping time η` is
selected so as to ensure that the expected back-substitution
error is within tolerance, and the “ripple” induced by a switch
to a new basis function being active in (15) is likewise
limited. In particular,

η`
.
“ sup

"

η P p0, η̄s

ˇ

ˇ

ˇ

ˇ

|hppvki , ζηq| ď p1´ µq δH ,
|hppvki , ζηq ´ hppv

k
i , z

k
i q| ď µ δH

*

(34)

in which µ P p0, 1q and η̄ P Rą0 are fixed. A scheme related
to (33), but based on the characteristics associated with the
Hamiltonian (4), is also viable.

V. EXAMPLE

A nonlinear system is considered with problem data [1,
p.127] given by

fpξq
.
“

ˆ

´2 ξ1 r1`
1
2 tan´1p3 ξ2

2{2qs
1
2 ξ1 ´ 3 ξ2 expp´ξ1{3q

˙

, σ
.
“ I2,

lpξq
.
“ 1

2 |ξ|
2, γ2 .

“ 1, M .
“ ´0.1 I2, (35)

with ξ
.
“ pξ1, ξ2q P R2, in which I2 P R2ˆ2 is the

identity. Value function approximation and basis adaptation
proceeds as per (15) and (30), using the basis propagation
defined by (31), (33), and (34). The target Hamiltonian back-
substitution error selected is δH

.
“ 0.1. Other parameters

selected include q .
“ 36, µ .

“ 0.5, η̄ .
“ 1. The standard max-

plus eigenvector method [1] summarized by (14) is applied
with τ

.
“ 0.05. Figures 1, 2, 3, and 4 illustrate evolution

of the basis Bk, tessellation T k, value function W k, and
associated Hamiltonian back-substitution error respectively.
The filled polytopes in Figure 2 indicate those with a vertex
furthest from tolerance, with the vertices involved identified
by black circles. Hamiltonian back-substitution error reduc-
tion is confirmed via Figure 4.

Fig. 1. Basis evolution.
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Fig. 2. Tessellation evolution.

VI. CONCLUSIONS

A basis adaptation iteration encapsulating a standard max-
plus eigenvector method for optimal control is developed,
with the objective of improving the Hamiltonian back-
substitution error associated with the value function approx-
imation obtained at each iteration. An example is included.
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