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Consider the following linear algebraic equation:

z = Hy (1)

with respect to variable y ∈ Rm, where H ∈ RN×m and
z ∈ RN . The equation (1) has a unique exact solution if
rank(H) = m and z ∈ span(H); an infinite set of solutions
if rank(H) < m and z ∈ span(H); and no exact solutions
if z /∈ span(H). We denote

H =


hT
1

hT
2
...

hT
N

 , z =


z1
z2
...
zN


with hT

i being the i-th row vector of H.
We consider a network with nodes indexed in the set

V =
{

1, . . . , N
}

. Each node i has access to the value of
hi and zi without the knowledge of hj or zj from other
nodes. The network interaction structure is described by a
connected undirected graph G = (V,E). Time is slotted
at k = 0, 1, 2, . . . . Each node i at time k holds a state
xi(k) ∈ Rm and exchanges this state information with other
neighboring nodes in the set Ni :=

{
j : {i, j} ∈ E

}
.

Distributed algorithms that solve the equation (1) under this
problem settings have been investigated in [1]–[3], with
a close relation to the framework of distributed gradient
optimization [4], [5]. The aim of this paper is to develop
algorithms that us uantized node communications [6], [7].

A. The Algorithm

Definition 1 (Quantization Function): A standard uni-
form quantizer is given by the function QK(·) : R →
{−K, . . . ,−1, 0, 1, . . . ,K} where

QK(z) =


0, if − 1/2 < z ≤ 1/2,

i, if 2i−1
2 < z ≤ 2i+1

2 , i = 1, · · · ,K,
K, if z > 2K+1

2 ,

−QK(−z), if z ≤ −1/2.

(2)
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With slight abuse of notation, we define QK(a) for a vector
a = (a1, · · · , am)T ∈ Rm by

QK(a) = (QK(a1), · · · , QK(am))T .

Note that to transmit the quantized information from the
quantizer QK(a) for a ∈ Rm , we need to transmit
m log2(2K + 1)-bit information.

We propose a pair of encoder and decoder for each node
to generate codes for its state, and to estimate the neighbors’
states. More precisely, we suppose each node has a global
scaling function s(k) that monotonely decreases to zero
at a suitable rate. We use s(k) to zoom-in each node’s
quantization error to increase the accuracy of state estimation
as time evolves, and the fact that the quantizer is not time-
invariant (which is perhaps surprising) allows us to achieve
the consensus requirement. We continue to use xi(k) to
denote the exact state of node i at time k, whose evolution
will be specified at a later stage.

[Encoder] The encoder of node j ∈ V recursively generates
quantized outputs {qj(k)} and internal states {bj(k)} from
the exact state sequence {xj(k)} as follows for any k ≥ 1:

qj(k) , QK

(
1

s(k − 1)
(xj(k)− bj(k − 1))

)
,

bj(k) , s(k − 1)qj(k) + bj(k − 1).

(3)

where the initial value bj(0) = 0. At time k, node j sends
the quantized state qj(k) to each of its neighboring nodes
i ∈ Nj .

[Decoder] When node i ∈ Nj receives the quantized data
qj(k) from node j, a decoder recursively generates an
estimate x̂ji(k) for xj(k) by the following for any k ≥ 1:

x̂ji(k) , s(k − 1)qj(k) + x̂ji(k − 1), (4)

where the initial value x̂ji(0) , 0.

[Algorithm] Motivated by the “consensus + projection” flow
presented in [2] but reflecting the presence of quantized
signals, we propose the following recursion for xi(k):

xi(k + 1) = xi(k) + h
∑
j∈Ni

(
x̂ji(k)− bi(k)

)
− γ

(
hih

>
i

h>i hi
xi(k)− zihi

h>i hi

)
, (5)

where h and r are positive constants.

The algorithm (5) clearly relies on quantized node
communication only since qj(k) takes values in
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{−K, . . . ,−1, 0, 1, . . . ,K} only. From the second equation
of (3), from (4) and the assumed initial conditions of zero
for x̂ji(0) and bj(0), we have the following for any k ≥ 0:

x̂ji(k) = bj(k) j ∈ V, i ∈ Nj . (6)

B. Convergence Result

We introduce a few useful notations as follows:

x(k) = col{x1(k), · · · ,xN (k)},
q(k) = col{q1(k), · · · ,qN (k)},
wi(k) = xi(k)− y∗,

w(k) = col{w1(k), · · · ,wN (k)},
ei(k) = xi(k)− bi(k),

e(k) = col{e1(k), · · · , eN (k)},

Hsd = diag

{
h1h

>
1

h>1 h1
, · · · , hNh>N

h>NhN

}
∈ RmN×mN .

(7)

Define

Pγ,h := ImN − (h (L⊗ Im) + γHsd) .

We impose the following two assumptions.

A1 There exists a unique solution satisfying (1): rank(H) =
m and z ∈ span(H).

A2 maxi ‖xi(0)‖∞ ≤ Cx and maxi ‖wi(0)‖∞ ≤ Cw,
where Cx and Cw are known constants.

Note that both the Laplacian L and Hsd are positive semi-
definite. With the assumption A1 and the condition that the
undirected graph G is connected, the matrix h (L⊗ Im) +
γHsd turns out to be positive definite [3]. As a result, we
can well define a nonempty set

Ξ :=
{

(h, γ) : 0 < λ < 1, ∀λ ∈ σ
(
Pγ,h

)}
.

For any (h, γ) ∈ Ξ, the corresponding eigenvalues of Pγ,h
are sorted in an ascending order as 0 < λ1 ≤ · · · ≤ λmN <
1. Then there exists a unitary matrix U such that

UTPγ,hU = diag{λ1, · · · , λmN} , Λ.

Thus,

(Pγ,h)
k

=
(
UΛUT

)k
= UΛkUT . (8)

Define Kα,h,γ := dMα,h,γe for some α ∈ (λmN , 1) with

Mα,h,γ :=
‖IN + hL‖∞

2α
+

h
√
mN‖L‖2

2α(α− λmN )
‖h (L⊗ Im)

+ γHsd‖∞. (9)

We are now ready to present our main result on the perfor-
mance of the algorithm (5) as an exact solver of the linear
equation (1).

Theorem 1: Suppose A1 and A2 hold. Let s(k) ,
s(0)αk ∀k ≥ 0 for some α ∈ (λmN , 1), and (h, γ) ∈ Ξ.

Then for any K ≥ Kα,h,γ , along the algorithm (5) with the
encode-decoder given by (3) and (4) there hold

lim
k→∞

xi(k) = y∗ ∀i ∈ V, and (10)

lim
k→∞

‖w(k)‖2
αk

≤ hs(0)
√
mN‖L‖2

2α(α− λmN )
(11)

provided that s(0) satisfies

s(0) > max
{Cx + γ‖Hsd‖∞Cw

K + 1
2

,

2(α− λmN ) (αCw + hCx‖L‖2)

h‖L‖2

}
. (12)

The proof is established based on a key observation that
with (12), the quantization function at each individual node
will be restricted in the interval [−K − 1/2,K + 1/2]
along the entire state evolution. This allows for a compact
node state space which ensures convergence to a consensus.
Finally, this consensus value can only be the solution of
the linear equation (1) due to the structure of the proposed
algorithm.
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