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Extended Abstract: Solving Network Linear Equations with Quantized
Node Communications

Jinlong Lei, Peng Yi, Guodong Shi, and Brian D. O. Anderson

Consider the following linear algebraic equation:

z=Hy (D

with respect to variable y € R™, where H € RV*™ and
z € RY. The equation (1) has a unique exact solution if
rank(H) = m and z € span(H); an infinite set of solutions
if rank(H) < m and z € span(H); and no exact solutions
if z ¢ span(H). We denote
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with h being the i-th row vector of H.

We consider a network with nodes indexed in the set
V = {17 .. .,N}. Each node 7 has access to the value of
h; and z; without the knowledge of h; or z; from other
nodes. The network interaction structure is described by a
connected undirected graph G = (V,E). Time is slotted
at k = 0,1,2,.... Each node 7 at time k holds a state
x;(k) € R™ and exchanges this state information with other
neighboring nodes in the set N; = {j : {i,j} € E}.
Distributed algorithms that solve the equation (1) under this
problem settings have been investigated in [1]-[3], with
a close relation to the framework of distributed gradient
optimization [4], [S]. The aim of this paper is to develop
algorithms that us uantized node communications [6], [7].

A. The Algorithm

Definition 1 (Quantization Function): A standard uni-

form quantizer is given by the function Qg (-) : R —
{-K,...,—1,0,1,..., K} where

0, if —1/2<2z<1/2,

i, if 2=l << 2l - ... K,

Qx(z) = o ok
K, if z> =55,
—Qk(—2), if z<-1/2.
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With slight abuse of notation, we define Q (a) for a vector
a=(ay, - ,a,)" € R™ by

Qx(a) = (Qx(a1), - ,Qx(am))".

Note that to transmit the quantized information from the
quantizer Qi (a) for a € R™ , we need to transmit
mlogy (2K + 1)-bit information.

We propose a pair of encoder and decoder for each node
to generate codes for its state, and to estimate the neighbors’
states. More precisely, we suppose each node has a global
scaling function s(k) that monotonely decreases to zero
at a suitable rate. We use s(k) to zoom-in each node’s
quantization error to increase the accuracy of state estimation
as time evolves, and the fact that the quantizer is not time-
invariant (which is perhaps surprising) allows us to achieve
the consensus requirement. We continue to use x;(k) to
denote the exact state of node ¢ at time k, whose evolution
will be specified at a later stage.

[Encoder] The encoder of node j € V recursively generates
quantized outputs {q,(k)} and internal states {b;(k)} from
the exact state sequence {x;(k)} as follows for any k > 1:

A b b

() £ Qe (s () byt 1),
bj;(k) £ s(k —1)q;(k) + b;(k —1).

where the initial value b;(0) = 0. At time k, node j sends

the quantized state q;(k) to each of its neighboring nodes
xS Nj.

3)

[Decoder] When node i € N receives the quantized data
q;(k) from node j, a decoder recursively generates an
estimate x;;(k) for x;(k) by the following for any k£ > 1:

%ji(k) = s(k = Day (k) + %;u(k — 1), @)
where the initial value %;;(0) £ 0.

[Algorithm] Motivated by the “consensus + projection” flow
presented in [2] but reflecting the presence of quantized
signals, we propose the following recursion for x;(k):

xi(k+1) = x;(k) + h Y (%i(k) = bi(k))
) , (9

JEN;
The algorithm (5) clearly relies on quantized node

communication only since q;(k) takes values in

~ h'h;

h b,

where h and 7 are positive constants.
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{-K,...,—1,0,1,..., K} only. From the second equation
of (3), from (4) and the assumed initial conditions of zero
for %;;(0) and b;(0), we have the following for any k& > 0:

)A(ji(k) = b](k) j S V, 1€ N]‘. (6)
B. Convergence Result
We introduce a few useful notations as follows:
x(k) = col{xy(k), -+ ,xn(k)},
q(k) = col{qi(k), -~ ,an(k)},
wi(k) =x;(k) —y",
w(k) = col{wy(k), -+ ,wn(k)}, o
ei(k) = xi(k) — bi(k),
e(k) = col{ei(k), - ,en(k)},
T T
H.y = dz'ag{thhl e hﬁhN} e RMVXmN
h; h, hyhy

Define
P, =L,y —(h(L®IL,)+vHs).

We impose the following two assumptions.

A1 There exists a unique solution satisfying (1): rank(H)
m and z € span(H).

A2 max; [|x;(0)]|cc < Cp and max; [|[W;(0)|lcc < Cu.

where C', and C, are known constants.

Note that both the Laplacian L and Hgq are positive semi-
definite. With the assumption A1l and the condition that the
undirected graph G is connected, the matrix h (L ®I,,) +
vHgq turns out to be positive definite [3]. As a result, we
can well define a nonempty set

—
—

={m:0<x<1 Vaea(P)}

For any (h,v) € Z, the corresponding eigenvalues of P j,
are sorted in an ascending order as 0 < A\ < --- < \n <
1. Then there exists a unitary matrix U such that

UTP, ,U = diag{\1, - ,Amn} = A,

Thus,

(®)
Define Ko~ = [Mq,n~]| for some o € (A,n,1) with

hvmN||L{»
2a(a — Apn)

(P, )" = (UAUT)" = UArUT.

| Iy + hL||
Ma,h,'y = 20 2

17 (L ® L)

+ YHsal| - )

We are now ready to present our main result on the perfor-
mance of the algorithm (5) as an exact solver of the linear
equation (1).

Theorem 1: Suppose Al and A2 hold. Let s(k)
5(0)a* Vk > 0 for some a € (A,n,1), and (h,7) €

L
-
=
=
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Then for any K > K, -, along the algorithm (5) with the
encode-decoder given by (3) and (4) there hold

klim z;(k)=y" VieV, and (10)
—00
o Aw(E)l2 _ hs(0)VmN]|L]
lim < (11
k—oo ok 2a(a — A\pun)
provided that s(0) satisfies
C;E +7||Hsd||oocw
0) > )
5(0) max{ K+l
2(a — Amw) (aCy + RCL||L|2) } (12)
ALz

The proof is established based on a key observation that
with (12), the quantization function at each individual node
will be restricted in the interval [-K — 1/2, K + 1/2]
along the entire state evolution. This allows for a compact
node state space which ensures convergence to a consensus.
Finally, this consensus value can only be the solution of
the linear equation (1) due to the structure of the proposed
algorithm.
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