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Abstract— Semi-linear partial differential equations model a
wide spectrum of physical systems with distributed parameters.
It is shown that under sufficient conditions on nonlinearities in
the systems and in cost functions, an optimal control input and
optimal actuator design exist. First-order optimality conditions
are obtained that characterize the optimizer. The results are
used to address vibration suppression in a nonlinear railway
track.

I. INTRODUCTION

Finding the best actuator location to control a distributed
parameter system can improve performance and significantly
reduce the cost of the control; see for example [1]. The
optimal actuator location problem has been discussed by
many researchers in various contexts [2], [3]. From a the-
oretical point of view, the existence of an optimal actuator
location has been discussed in the literature for linear partial
differential equations (PDEs). In [4], it is was proven that an
optimal actuator location exists for a linear-quadratic control
system with a compact input operator that continuously
depends on actuator locations. From a practical point of
view, further conditions on operators and cost functions are
needed to guarantee the convergence in numerical schemes
[4]. Similar results have been obtained for H2 and H∞
controller design objectives [5], [6].

Nonlinearities in some distributed parameter systems have
a significant effect on their dynamics, and such systems
cannot be accurately modeled by linear models. Optimal
control has been studied for a number of applications,
including wastewater treatment systems [7], steel cooling
plants [8], oil extraction through a reservoir [9], solidification
models in metallic alloys [10], thermistors [11], the Schlögl
model [12], static elastoplasticity [13], and the Fokker-Planck
equation [14].

A review of PDE-constrained optimization theory can
be found in the books [15], [16] in which a variety of
optimization problems constrained by PDEs are discussed. In
[17], [18], first-order optimality conditions are investigated
for parabolic partial differential equations.

Hence, a control design and actuator location strategy
should take the nonlinear behavior into consideration. There
are a few studies in the engineering literature on optimal
actuator locations in nonlinear systems; see for example,
[19], [20]. Theory for the concurrent optimal control and
actuator design of a class of controlled semi-linear PDEs
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is described in this paper. The research described extends
previous work in that the linear part of the partial differential
equation is not constrained to be the generator of an analytic
semigroup. A general class of PDEs with weakly continuous
nonlinear part is considered. It is shown that the problem
has an optimal control and actuator design. Under additional
assumptions, optimality equations explicitly characterizing
the optimal control and actuator are obtained. Details of the
work described in this talk can be found in [21].

Vibration control of nonlinear beam models as well as
optimal actuator location in flexible structures have attracted
attention in recent years; see for example [22], [23], [1],
[24]. The result of this study is applied to a semi-linear beam
model. This model predicts the dynamic behavior of railway
tracks and its underneath foundation. This application is
primarily motivated by the need for an optimal control
strategy in the vibration suppression of railway tracks [25].
The behaviour of the foundation introduces nonlinearity into
the model.

II. MAIN RESULTS

Consider a semi-linear system with state z(t) on a sepa-
rable reflexive Banach state space Z:

ż(t) = Az(t) + F(z(t)) + B(r)u(t), z(0) = z0 ∈ Z, (1)

The function u(t) is the input to the system, and takes
values in a Banach space U. The control operator B depends
on a parameter r that takes values in a set Kad. The
parameter r typically has interpretation as possible actuator
locations. The operators A, F(·), and B satisfy the following
assumptions.

Assumption A.
1) The state operator A with domain D(A) generates a

strongly continuous semigroup T (t) on Z.
2) The nonlinear operator F(·) is weakly sequentially

continuous, i.e., if zn ⇀ z, then F(zn) ⇀ F(z) on
Z. It is also locally Lipschitz continuous on Z; that is,
for every positive number δ, there exists LFδ > 0 such
that

‖F(z2)−F(z1)‖ ≤ LFδ ‖z2 − z1‖ ,

for all ‖z2‖ ≤ δ and ‖z1‖ ≤ δ.
3) For each r ∈ Kad, the input operator B(r) is a linear

bounded operator that maps the input space U into the
state space Z. This family of operators is uniformly
bounded over Kad, i.e., there exist a positive number
MB such that ‖B(r)‖ ≤MB for all r ∈ Kad.

In some cases, due to lack of regularity of the input u a
classical solution to the IVP (1) is not assured. With these
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assumptions, the existence of a unique mild solution to the
initial value problem (IVP) (1) is proven assuming only that
u ∈ Lp(0, T ;U), 1 < p <∞.

Theorem 1. Under Assumption A, for each z0 ∈ Z and
positive number R, there exists T > 0 such that the IVP (1)
admits a unique local mild solution z ∈ C(0, T ;Z) for all
u ∈ Lp(0, T ;U), ‖u‖p ≤ R, and all r ∈ Kad.

For functionals φ(z) on Z and ψ(u) on U, consider the
cost function

J(u, r; z0) =

∫ T

0

φ(z(t)) + ψ(u(t)) dt, (2)

where the admissible control input u(t) belongs to the set

Uad = {u ∈ Lp(0, T ;U)| ‖u‖p ≤ R}.

The optimization problem is to minimize J(u, r; z0) over
all admissible control inputs u ∈ Uad, and also over all
admissible actuator locations r ∈ Kad, subject to the IVP
(1) with a fixed initial condition z0 ∈ Z. That is,

min J(u, r; z0)
s.t. ż(t) = Az(t) + F(z(t)) + B(r)u(t), ∀t ∈ (0, T ]

z(0) = z0,
u ∈ Uad
r ∈ Kad

(P)
To guarantee the existence of a unique optimizer, further
assumptions are needed on the operators B(r), the set Kad,
and the cost function J(u, r; z0).

Assumption B.
1) Let Kad be a compact set in the actuator location space

K. The family of input operators B(·) : Kad(⊂ K) →
L(U,Z) are continuous with respect to r in the operator
norm topology:

lim
r2→r1

‖B(r2)− B(r1)‖ = 0.

2) The functionals φ(·) and ψ(·) are weakly lower semi-
continuous positive functionals on Z and U, respec-
tively.

It is shown that under these assumptions, an optimal
control and actuator exist.

Theorem 2. For initial condition z0 ∈ Z let T be such that
the mild solution exists for all u ∈ Uad, and all r ∈ Kad.
Under Assumptions A and B, there exists a control input
uo ∈ Uad together with an actuator location ro ∈ Kad, that
solve the optimization problem P.

To characterize an optimizer to the optimization problem,
further assumptions on differentiability of the nonlinear
operator F and the cost function are needed.

Assumption C.
1) The nonlinear operator F(·) is Fréchet differentiable

on Z. Indicate the Fréchet derivative of F(·) at z by
F ′z.

2) The mapping z 7→ F ′z is bounded, i.e., bounded sets in
Z are mapped into bounded sets in L(Z).

3) The control operator B(r) is Fréchet differentiable with
respect to r from K to L(U,Z). Indicate the Fréchet
derivative of B(r) at r by B′r.

4) The state space Z is a Hilbert space and the input
space U, and actuator location space K are each finite-
dimensional Hilbert spaces.

5) In the cost function (2), consider the functionals

φ(z) = 〈Qz, z〉 , ψ(u) = 〈Ru, u〉U ,

where the linear operator Q is a positive semi-definite,
self-adjoint bounded operator on Z, and the linear
operator R is a positive definite, self-adjoint bounded
operator on U.

In the following theorem, the mapping S(u; r, z0) yields
a state z ∈ C(0, T ;H) as a solution to IVP (1) with an
input u ∈ L2(0, T ;U), actuator location r ∈ K, and initial
condition z0 ∈ H.

Theorem 3. Suppose that Assumptions A, B, and C hold. For
every initial condition z0 ∈ Z, let the pair (uo, ro) be a local
minimizer of the optimization problem P with the optimal
trajectory zo = S(uo; ro, z0). Set u = (u1, u1, ..., un) ∈ Rn
and r = (r1, r1, ..., rm) ∈ Rm; this implies that

(Bror)u =

m∑
j=1

n∑
i=1

∂bi
∂rj

(ro)rjui,

for some differentiable Z-valued functions bi(·). If (uo, ro)
is an interior point of Uad ×Kad then (uo, ro) satisfies

uo(t) = −R−1B∗(ro)po(t), (3)
n∑
i=1

∫ T

0

〈
po(s),

∂bi
∂rj

(ro)

〉
uoi (s)ds = 0, j = 1, 2, ...,m,

where po(t), the adjoint state, is the mild solution of the final
value problem (FVP):

ṗo(t) = −(A∗ + F ′∗zo(t))p
o(t)−Qzo(t), po(T ) = 0.

III. NONLINEAR RAILWAY TRACK MODEL

Railway tracks are rested on ballast which is known for
exhibiting nonlinear viscoelastic behavior [26]. If a track
beam is made of a Kelvin-Voigt material, then the railway
track model will be a semi-linear partial differential equation
on x ∈ [0, `] as follows:

ρa
∂2w

∂t2
+

∂

∂x2
(EI

∂2w

∂x2
+ Cd

∂3w

∂x2∂t
) + µ

∂w

∂t
+ kw

+ αw3 = b(x; r)u(t), (4)

w(x, 0) = w0(x),
∂w

∂t
(x, 0) = v0(x),

w(0, t) = w(`, t) = 0,

EI
∂2w

∂x2
(0, t) + Cd

∂3w

∂x2∂t
(0, t) = 0.

EI
∂2w

∂x2
(`, t) + Cd

∂3w

∂x2∂t
(`, t) = 0,
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where the positive constants E, I , ρ, a, and ` are the modulus
of elasticity, second moment of inertia, density of the beam,
cross-sectional area, and length of the beam, respectively.
The linear and nonlinear parts of the foundation elasticity
correspond to the coefficients k and α, respectively. The
constant µ ≥ 0 is the damping coefficient of the foundation,
and Cd ≥ 0 is the coefficient of Kelvin-Voigt damping in
the beam. The external force exerted on the railway track
is denoted by u(t). It will be considered as a scalar control
input to manipulate the system. The function b(x; r) is a
piece-wise continuous function in x parametrized by r, the
actuator locations. The function b(x; r) will describe the
effect of actuators on the system. It is assumed to be a
sufficiently smooth function of the actuator location so that
Assumptions B1 and C3 are satisfied.

Define the closed self-adjoint positive operator A0 on
L2(0, `) as:

A0w := wxxxx,

D(A0) :=
{
w ∈ H4(0, `)|w(0) = w(`) = 0,

wxx(0) = wxx(`) = 0} , (5)

where subscripts denote the derivative with respect to spatial
variable. Consider the state space Z = H2(0, `)∩H1

0 (0, `)×
L2(0, `) with the inner product

〈(w1, v1), (w2, v2)〉 =

∫ L

0

EIw1xxw̄2xx+kw1w̄2+ρav1v̄2 dx.

(6)
The state operator associated with the Kelvin-Voigt beam is

AKV (w, v) :=

(
v,− 1

ρa
A0(EIw + Cdv)

)
, (7)

with domain

D(AKV ) :=
{

(w, v) ∈ Z| v ∈ H2(0, `) ∩H1
0 (0, `),

EIw + Cdv ∈ D(A0)} , (8)

which is dense in Z. The state space Z is separable since
the spaces H2(0, `) ∩ H1

0 (0, `) and L2(0, `) are separable.
Furthermore, define the linear operators K, B(r), and the
nonlinear operator F(·) as

K(w, v) := (0,− 1

ρa
(µv + kw)),

B(r)u := (0,
1

ρa
b(x; r)u),

F(w, v) := (0,− α

ρa
w3).

The operator K is a bounded linear operator on Z. For each
r, operator B(r) is also a bounded operator that maps an
input u ∈ R to the state space Z. Since the space H2(0, `)
is contained in the space of continuous functions over [0, `],
the the nonlinear term w3 is in L2(0, `). Thus, the nonlinear
operator F(·) is well-defined on Z. Lastly, define the operator
A = AKV + K, with the same domain as AKV . With
these definition and by setting z = (w, v), the state space
representation of the railway model is described by (1).

The original railway track model in [26] ignores the
Kelvin-Voigt damping in the beam (i.e. Cd = 0), and only
considers the Kelvin-Voigt damping in the ballast. In this
case, the semigroup generated by A is not analytic. In fact,
the railway model with Cd = 0 constitutes a hyperbolic-like
PDE, while the model with Cd > 0 is a parabolic-like model.
The results of this paper hold true for both models.

To guarantee the existence of a unique solution to the PDE
(4), the nonlinear operator F(·) needs to satisfy Assumptions
A2, C1, and C2.

Lemma 4. The nonlinear operator F(·) is continuously
Fréchet differentiable on Z. This operator is also weakly
sequentially continuous on Z.

The previous lemma also ensures that the nonlinear op-
erator F(·) is locally Lipschitz continuous on Z agreeing
with Assumption A2. By Theorem 1, for control inputs
u ∈ Lploc(0,∞), 1 < p < ∞, the existence of a unique
local mild solution is guaranteed.

It has been shown that Assumption B and C are satisfied
[21]. As a result, the existence of an optimal pair (uo, ro)
together with an optimal trajectory zo follows from Theo-
rem 2.

Accordingly, using Theorem 3, the optimal pair (uo, ro)
satisfies equation (3). To derive the equations in (3), some
adjoint operators need to be calculated. Calculation of the
operator A∗ is straightforward; it is

A∗(f, g) =

(
−g, 1

ρa
A0(EIf − Cdg) +

k

ρa
f − µ

ρa
g

)
,

for all (f, g) ∈ D(A∗) where the domain

D(A∗) =
{

(f, g) ∈ Z| g ∈ H2(0, `) ∩H1
0 (0, `),

EIf − Cdg ∈ D(A0)} . (9)

Let zo(t) = (wo, vo) be the optimal trajectory evaluated at
time t ∈ [0, T ]. The adjoint of the operator F ′zo(t) for every
t ∈ [0, T ] on Z is

F ′∗zo(t)(f, g) = (ζ, 0). (10)

where

ζ(x) =
3α

ρa

∫ `

0

G(x, y)(wo(y))2g(y) dy,

G(x, y) =
1

6`

{
(2`2y − 3`y2 + y3)x+ (y − `)x3, x ≤ y
(y3 − `2y)x+ yx3, x > y

Furthermore, the adjoint operator of B(r) as an operator from
the input space R to the state space Z is derived for every
(f, g) ∈ Z as

B∗(r)(f, g) = ρa

∫ `

0

b(x; r)g dx. (11)

Let (q1, q2) ∈ Z, set Q(w, v) = (q1w, q2v) and R = 1 in
the cost function of Assumption C5, and let br(x; ro) be the
derivative of b(x; r) with respect to r at ro. In conclusion,
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the following set of equations yields an optimizer for every
initial condition z0 = (w0, v0) ∈ Z:

ρawott + (EIwoxx + Cdw
o
txx)xx + µwot + kwo

+α(wo)3 = b(x; ro)uo(t),

wo(0, t) = wo(`, t) = 0,

EIwoxx(0, t) + Cdw
o
txx(0, t) = 0

EIwoxx(`, t) + Cdw
o
txx(`, t) = 0

wo(x, 0) = w0(x), wot (x, 0) = v0(x),

(12)



ρafot − ρago + 3α
∫ `
0
G(x, y)(wo(y))2go(y) dy

= −ρaq1(x)wo,

ρagot + (EIfoxx − Cdgoxx)xx − µgo + kfo

= −ρaq2(x)wot ,

fo(0, t) = fo(`, t) = 0, go(0, t) = go(`, t) = 0,

EIfoxx(0, t)− Cdgoxx(0, t) = 0

EIfoxx(`, t)− Cdgoxx(`, t) = 0

fo(x, T ) = 0, go(x, T ) = 0,

(13)

uo(t) = −ρa
∫ `

0

b(x; ro)go(x, t) dx, (14)∫ T

0

∫ `

0

uo(t)br(x; ro)go(x, t) dxdt = 0. (15)
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