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Abstract— We study input-to-state stability of bilinear con-
trol system with possibly unbounded control operator and
unbounded bilinearity. We show that every internally expo-
nentially stable bilinear control system is integral input-to-
state stable. An application to the bilinearly controlled Fokker-
Planck equation is given.

I. INTRODUCTION

The concept of input-to-state stability, introduced by
E. Sontag in 1989 [1], is a well-studied stability notion of
control systems with respect to external inputs. For a survey
on input-to-state stability for finite-dimensional systems we
refer the reader to [2]. A variant of classic input-to-state
stability is the notion of integral input-to-state stability, see
e.g., [3]. We note that for linear, finite-dimensional sys-
tems input-to-state stability, integral input-to-state stability
and (exponential) internal stability (i.e. without control) are
all equivalent. However, when it comes to bilinear, finite-
dimensional systems integral input-to-state stability is a
weaker notion than input-to-state stability, and the latter is
rarely satisfied.

For infinite-dimensional systems, input-to-state stability
and integral input-to-state stability have been less studied,
but more intensively in the recent past, see [4], [5], [6],
[7], [8], [9], [10], [11], [12], [13], [14], [15]. In [9] infinite-
dimensional bilinear control systems with bounded control
operator and bilinearity are studied and the equivalence of
integral input-to-state stability and exponential stability is
shown. In this talk we aim to generalize this result to infinite-
dimensional bilinear control systems with unbounded oper-
ators. This generalization enables us to show integral input-
to-state estimates for a Fokker-Planck equation controlled
through a bilinear control operator.

II. INPUT-TO-STATE STABILTY

We study infinite-dimensional bilinear control systems of
the form

ẋ(t) = Ax(t) + u1(t)B1x(t) +B2u2(t), t ≥ 0

x(0) = x0,

}
(1)

where A generates a C0-semigroup (T (t))t≥0 on a Banach
space X , B1 ∈ L(X,X−1), B2 ∈ L(U,X−1) for some
Banach space U , u1 ∈ L∞(0,∞), u2 ∈ L∞(0,∞;U) and
x0 ∈ X . Note that B1 and B2 are possibly unbounded from
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X to X and from U to X . Here X−1 is the completion
of X with respect to the norm ‖x‖X−1

= ‖(β − A)−1x‖X
for some β in the resolvent set ρ(A) of A. The semigroup
(T (t))t≥0 extends uniquely to a C0-semigroup (T−1(t))t≥0

on X−1 whose generator A−1 is an extension of A, see e.g.
[16]. Thus we may consider Equation (1) on the Banach
space X−1. A continuous function x : [0, t0]→ X is called
a mild solution of (1), if

x(t) = T (t)x0 +

∫ t

0

T−1(t− s)[u1(s)B1x(s) +B2u2(s)]ds,

for every t ∈ [0, t0].
Definition 1: Let q ∈ [1,∞] and Y be a Banach space. An

operator B ∈ L(Y,X−1) is called an q-admissible control
operator if ∫ t

0

T−1(t− s)By(s)ds ∈ X

for every t ≥ 0 and y ∈ Lq(0,∞;Y ).
Clearly, p-admissibility implies q-admissibility if 1 ≤ p ≤

q ≤ ∞. If X is reflexive, then 1-admissibility implies
boundedness of the operator B, that is B ∈ L(Y,X), [17,
Thm. 4.8]. Moreover, the operator B is q-admissible if and
only if for every t ≥ 0 there exists a constant Kt ≥ 0 such
that ∥∥∥∥∫ t

0

T−1(t− s)By(s)ds

∥∥∥∥ ≤ Kt‖y‖Lq (2)

for every y ∈ Lq(0,∞;Y ). Clearly, the best constant Kt is
non-decreasing in t.

Definition 2: Let q ∈ [1,∞]. The operator B ∈
L(Y,X−1) is called an infinite-time q-admissible control
operator, if B ∈ L(Y,X−1) is a q-admissible control
operator and supt∈[0,∞)Kt <∞.

We note that for exponentially stable semigroups
(T (t))t≥0 an operator B ∈ L(Y,X−1) is infinite-time q-
admissible if and only if B is q-admissible.

Proposition 3: If B1 ∈ L(X,X−1) and B2 ∈ L(U,X−1)
are q-admissible control operators with q ∈ [1,∞), then
for every x0 ∈ X and every u1 ∈ L∞(0,∞), u2 ∈
L∞(0,∞;U) the system (1) possesses a unique mild solution
on [0,∞).

We will need the following well-known function classes
from Lyapunov theory.

K = {µ ∈ C(R+
0 ,R

+
0 ) | µ(0) = 0, µ strictly increasing},

K∞ = {θ ∈ K | lim
x→∞

θ(x) =∞},

L = {γ ∈ C(R+
0 ,R

+
0 ) | γ str. decreas., lim

t→∞
γ(t) = 0},

KL = {β : (R+
0 )2 → R+

0 | β(·, t) ∈ K ∀t, β(s, ·) ∈ L ∀s}.
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Definition 4: (i) System (1) is called input-to-state sta-
ble (ISS), if there exist functions β ∈ KL and µ1, µ2 ∈
K∞ such that for every x0 ∈ X , u1 ∈ L∞(0, t) and
u2 ∈ L∞(0, t;U) there exists a unique mild solution
x of (1) and

‖x(t)‖ ≤ β(‖x0‖, t) + µ1(‖u1‖L∞(0,t))

+µ2(‖u2‖L∞(0,t;U)),

for every t ≥ 0.
(ii) System (1) is called integral input-to-state stable

(iISS), if there exist functions β ∈ KL, θ1, θ2 ∈ K∞
and µ1, µ2 ∈ K such that for every x0 ∈ X and
u1 ∈ L∞(0, t) and u2 ∈ L∞(0, t;U) there exists a
unique mild solution x of (1) and

‖x(t)‖ ≤ β(‖x0‖, t) + θ1

(∫ t

0

µ1(‖u1(s)‖ds
)

+θ2

(∫ t

0

µ2(‖u2(s)‖ds
)
,

for every t ≥ 0.
For finite-dimensional bilinear systems, Sontag [18]

showed that exponentially stable systems are in general not
ISS, but are always iISS. In [19] it is shown that system (1) is
iISS if and only if the semigroup (T (t))t≥0 is exponentially
stable in the case of bounded control operators B1 and B2.
In this talk we generalize this result to bilinear systems with
unbounded control operators. Our main result is as follows.

Theorem 5: Assume that B is q-admissible for some q ∈
[1,∞). Then the system (1) is iISS if and only if the
semigroup (T (t))t≥0 is exponentially stable. Moreover, in
this case µ1, µ2 ∈ K can be chosen as µ1(s) = µ2(s) := sq .

III. CONTROLLED FOKKER-PLANCK EQUATION

Following [20], [21] we consider a Fokker-Planck equation
on a bounded domain Ω ⊂ Rn with smooth boundary ∂Ω of
the form
∂ρ
∂t (x, t) = ν∆ρ(x, t) +∇ ·

(
ρ(x, t)∇(W (x) + α(x)u(t))

)
ρ(x, 0) = ρ0(x),

where x ∈ Ω, t > 0, with reflective boundary condition

0 = (ν∇ρ+ ρ∇W + ρ∇αu) · ~n

on ∂Ω × (0,∞) where ~n refers to the unit normal vector
on the boundary. Here ρ0 denotes the initial probability
distribution with

∫
Ω
ρ0(x)dx = 1 and ν > 0. Furthermore,

W,α are sufficiently smooth and the control thus enters
through the potential V (x, t) = W (x)+α(x)u(t). Under the
structural assumption that ∇α · ~n = 0 on the boundary, this
system can be written as in (1) with B2 = 0 The uncontrolled
equation is not exponentially stable, as there exists a non-
zero stationary point ρ∞. Therefore, the system is considered

on the orthogonal complement of span ρ∞ in X = L2(Ω),
on which the system is in fact exponentially stable and the
bilinearity is q-admissible for some q ∈ [1,∞).
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