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Abstract— This paper deals with Markov Jump Linear Sys-
tems (MJLS) with the state constrained in a polyhedral cone.
This class of systems can be seen as the generalization of
Positive MJLS (where the cone is the positive orthant of the
state space). First, we provide results on the analysis of some
relevant performance indices, including the expected L1 norm
of the impulse response. The problem of state-feedback design
preserving cone-invariance and stability while guaranteeing an
upper bound of such a performance index is also tackled. Two
different solutions are worked out. The first one is based on
nonlinear programming but has the advantage of providing a
full parametrization of all admissible gains. The second solution
is based on linear programming but is more conservative. Some
numerical examples are presented to show the effectiveness of
these design procedures.
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I. INTRODUCTION

Markov jump linear systems (MJLS) describe a class of
dynamic systems randomly jumping among linear subsys-
tems according to a stochastic switching signal generated by
a Markov chain [1]–[3]. MJLS are usually adopted to handle
random events like unexpected faults or changes in actuators,
abrupt environmental disturbances, sudden changes of sys-
tem modes, etc.

Recently, considerable attention has been focused on Pos-
itive MJLS (PMJLS), in which the subsystems are positive
systems. By definition, the state variables of positive systems
remain nonnegative whenever initialized in the nonnegative
orthant and driven by nonnegative inputs [4]. Positive sys-
tems arise frequently in economics, biology and sociology
applications. As a peculiar feature, the analysis of stability
and L1 performance measures for positive systems can
be tackled by means of linear programming. The reader
interested in the study of L1 performance for deterministic
linear positive systems is referred to [5]–[8].

Several results on the properties of PMJLS are reported
in the survey paper [9]. Further recent contributions can
be found in [10]–[14]. A common approach used in these
papers is to construct an equivalent deterministic positive
system describing the average behavior of the state and
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output variables. Then the mean stability of a PMJLS can
be assessed in terms of stability of the deterministic positive
linear system and input-output L1 performance measures of
a PMJLS can be investigated through suitable norms of the
deterministic system.

Positive systems can be regarded as a special case of
cone-invariant systems with the nonnegative orthant being
the positively invariant set. A generalization where the
invariant set is a general proper cone has been recently
considered in some papers, see e.g. [15]–[19]. Such systems
have applications in various fields including rendezvous of
multiple agents [20] and molecular biology [21]. When such
systems are affected by random jumps, it becomes natural
to introduce the class of cone-invariant MJLS. In this paper
we will focus on MJLS in polyhedral cones defined by a
set of linear inequalities in the state space, which apparently
have not been considered before, apart from the related paper
[22] dealing with stability and state-feedback stabilization of
MJLS in polyhedral cones.

The main contributions of the present paper include:
1) A characterization of the expected L1 norm of the

system impulse response.
2) A state-feedback design procedure aimed at preserving

the cone-invariance property and minimizing the above
L1 norm.

The derivation relies on the study of an equivalent determin-
istic system. The state-feedback design problems are solved
following two different approaches. The first one provides
necessary and sufficient conditions for having a performance
index less than a prescribed value but is based on nonlinear
programming. On the contrary, the second one is based on
linear programming but the conditions are only sufficient, so
leading to conservative results.

The rest of the paper is organized as follows. Section
2 gives basic notations and some necessary definitions and
mathematical preliminaries. Section 3 addresses the perfor-
mance analysis in a deterministic setting. The main results
are given in Section 4. Numerical examples are presented in
Section 5. Section 6 concludes the paper.

II. NOTATIONS AND PRELIMINARIES

In this paper, the symbols R, Rn and Rn×n represent the
set of real numbers, the space of n-vectors of real numbers
and the space of n × n matrices with real number entries,
respectively. The symbol N+ represents the set of positive
integers. S denotes a finite set S := {1, 2, . . . , N}, N ∈ N+.
In is the identity matrix with of dimension n. 1m stands for a
column vector of dimension m and each of its entries is equal
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to 1. The symbol ek denotes the k-th column of the identity
matrix. AT is the transpose of matrix A. We use ≺,�
(�,�) to denote component-wise inequalities. E[·] denotes
the expectation and Pr(·) denotes probability. The symbol
⊗ represents the Kronecker product and (ξ, ζ) represents
the inner product of vectors ξ and ζ. diag{Ai} denotes the
block diagonal matrix obtained by orderly putting Ai on the
diagonal. col{ξi} stands for a column vector obtained by
putting vectors ξi orderly stacked in a single column.

The attention of this paper will be focused on systems
described in the following forms:
(a) Continuous-time deterministic linear system

Ξ :
ẋ(t) = Ax(t) +Bww(t) +Bu(t)

z(t) = Cx(t) +Dww(t) +Du(t)

where x(t) ∈ Rnx is the state variable, u(t) ∈ Rnu is the
control input, w(t) ∈ Rnw is the disturbance input and z(t) ∈
Rnz is the performance output.
(b) Continuous-time MJLS

ΞM :
ẋ(t) = A(rt)x(t) +Bw(rt)w(t) +B(rt)u(t)

z(t) = C(rt)x(t) +Dw(rt)w(t) +D(rt)u(t)

where x(t) ∈ Rnx is the state variable, u(t) ∈ Rnu is the
control input, w(t) ∈ Rnw is the deterministic disturbance
input, z(t) ∈ Rnz is the performance output. The signal
rt represents the jumping process, which is a homogeneous
finite state Markov process with right continuous trajectories
and takes values in the set S. The jumping process is
characterized by the transition probability

Pr(rt+∆ = j | rt = i) =

{
λij∆ + o(∆), j 6= i

1 + λii∆ + o(∆), j = i

where ∆ > 0, lim∆→0(o(∆)/∆) = 0, λij ≥ 0 (i, j ∈

S, j 6= i), and λii = −
N∑

j=1,j 6=i

λij . We further de-

fine the probability distribution at time t being π(t) :=[
[π(t)]1 . . . [π(t)]N

]T
, where [π(t)]i = Pr(rt = i).

Given an initial probability distribution π0, the probability
distribution π(t) obeys the differential equation

π̇(t)T = π(t)T Λ,

where Λ denotes the transition rates matrix with λij being its
(i, j)th entry. We will assume that Λ is an irreducible matrix
(see [2]), so that a unique stationary probability distribution
π̄ exists.

In this paper, we assume that the initial probability dis-
tribution π0 coincides with π̄ = limt→∞ π(t). Moreover,
the symbols Ai, Bwi, Bi, Ci, Dwi, Di are used to denote the
system matrices of the ith mode.

Definition 1: [23], [24]. Consider a set K ⊆ Rn, KG

denotes the set consisting of all finite nonnegative linear
combinations of the elements of K; K is said to be a cone
if K = KG; K is said to be convex if αξ1 + (1− α)ξ2 ∈ K
for any points ξ1, ξ2 ∈ K and α ∈ [0, 1]; to be a closed
set if every limit point of K is a point of K; to be solid
if its interior Int(K) is not an empty set; and to be pointed

if K ∩ {−K} = {0}. A cone which is closed, convex, solid
and pointed is called a proper cone. The dual of K is defined
as the set K∗ = {ζ ∈ Rn : (ζ, ξ) ≥ 0 for all ξ ∈ K}. In
addition, ξ2 �K ξ1 indicates ξ1 − ξ2 ∈ K, and ξ2 ≺K ξ1
means ξ1 − ξ2 ∈ Int(K).

Definition 2: A polyhedral cone P[F ] (referred to as P)
with F ∈ Rm×n, is defined by P = {ξ ∈ Rn : Fξ � 0},
in which P \ {0} 6= ∅ and rank(F ) = n. F is called the
constraint-matrix (c-matrix) of P .

Definition 3: A nonzero vector v lying in a polyhedral
cone P ⊆ Rn is called an extreme ray if there are n − 1
linearly independent constraints binding on v. Denote by V ,
and call it e-matrix of P , the n×m matrix whose columns
are the extreme rays of P .

Any vector in the cone P can be expressed as a nonneg-
ative linear combination of its extreme rays, namely ξ ∈ P
if and only if ξ = V p, p � 0.

Definition 4: A square matrix A ∈ Rn×n is cross-positive
on a polyhedral cone P if for any ξ ∈ P , ζ ∈ P∗ with
(ζ, ξ) = 0, one has (ζ,Aξ) ≥ 0. A is called P-nonnegative
if AP ⊆ P .

Hereafter, we will assume that the variables x(t), w(t),
z(t) of systems Ξ and ΞM are restricted in polyhedral
cones, that will referred to as Px,Pw,Pz respectively. With
reference to Px, Pw,Pz , given matrices Fx ∈ Rmx×nx ,
Fw ∈ Rmw×nw , Fz ∈ Rmz×nz will denote their c-matrices,
and Vx ∈ Rnx×mx , Vw ∈ Rnw×mw , Vz ∈ Rnz×mz will
denote the corresponding e-matrices.

Definition 5: [19] Given Pw,Px,Pz , system Ξ (or ΞM )
is said to be cone-invariant with respect to (Pw,Px,Pz) if
for any w(t) ∈ Pw and any initial state x0 ∈ Px, we have
x(t) ∈ Px and z(t) ∈ Pz . In particular, system Ξ (or ΞM ) is
said to be cone-invariant with respect to Px if for any initial
state x0 ∈ Px and null input, we have x(t) ∈ Px, t ≥ 0.

Definition 6: A given MJLS ΞM is mean stable if
E[x(t)]→ 0 as t→∞, for any initial state x0.

Remark 1: If system ΞM is cone-invariant with re-
spect to (Pw,Px,Pz), mean stability implies that all the
state trajectories converge to the origin almost surely, i.e.,
Pr(limt→∞ x(t) = 0) = 1. Note that this kind of stability,
which is peculiar to cone-invariant systems, can be applied
to positive systems as well since the nonnegative orthant can
be viewed as a special proper cone. The related results can
be found in [12].

Lemma 1: [19] Given Px, suppose A ∈ Rnx×nx is Hur-
witz and cross-positive on Px, then−A−1 is Px-nonnegative.

Lemma 2: [19] Given Pw,Px,Pz , the open-loop system
Ξ is cone-invariant with respect to (Pw,Px,Pz) if and only
if A is cross-positive on Px, BwPw ⊆ Px, CPx ⊆ Pz and
DwPw ⊆ Pz .

Lemma 3: [19] [25] Given Pw,Px,Pz , the open-loop
system Ξ is cone-invariant with respect to (Pw,Px,Pz) if
and only if there exist a Metzler matrix Ã, nonnegative
matrices B̃w, C̃, D̃w such that FxA = ÃFx, FxBw =
B̃wFw, FzC = C̃Fx, FzDw = D̃wFw.

Lemma 4: [22] A ∈ Rnx×nx is cross-positive on Px if
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and only if there exists a nonnegative scalar α such that

Fx(A+ αInx)Vx � 0.
Lemma 5: [17]. Given Px, suppose that A is cross-

positive on Px, then system ẋ(t) = Ax(t) is Hurwitz stable
if and only if there exists a vector s �Px

0, such that
As ≺Px

0.
Lemma 6: [22] Given Px, suppose that Ai, i ∈ S are

cross-positive on Px, then Â = ΛT ⊗ Inx + diag{Ai} is
cross-positive on PN

x .

III. PERFORMANCE MEASURES IN L1 FOR
DETERMINISTIC SYSTEMS

In order to analyze the mean properties of a cone-invariant
MJLS, it is convenient to transform it into an equivalent
deterministic system. For this reason, in this section, we first
study a L1 performance index associated with the impulse
response of deterministic systems. A state-feedback con-
troller ensuring stability, cone-invariance and upper bounded
performance is designed afterwards.

We consider system Ξ with a zero initial state and w(t) =
δ(t)ek, k = 1, 2, . . . , nw, Pw = Rnw

+ (the nonnegative or-
thant of Rnw ), where δ(t) denotes the Dirac unit impulse. Let
z[k](t) be the associated response and define the performance
as

J1 =

nw∑
k=1

∫ ∞
0

ηTz z
[k](t)dt, (1)

where ηz ∈ P∗z .
First, we characterize the index J1 for an open-loop

system, i.e. with u(t) = 0.
Proposition 1: Given Px,Pz and system Ξ with x0 =

0, u(t) = 0, assume that system Ξ is stable and cone-
invariant with respect to (Rnw

+ ,Px,Pz). Then the perfor-
mance index (1) can be computed as

J1 = −ηTz CA−1Bw1nw
+ ηTz Dw1nw

. (2)

Moreover, given a scalar γ > 0, J1 < γ if and only if
there exists a vector s �Px

0 such that

As+Bw1nw
≺Px

0, (3a)

ηTz (Cs+Dw1nw
) < γ. (3b)

Proof: The performance index (1) can be expressed as
(2) by observing that

z[k](t) = CeAtBwek +Dwekδ(t),

and ∫ ∞
0

z[k](t)dt = (−CA−1Bw +Dw)ek,

in view of Hurwitz stability of matrix A.
Next, it can be shown that condition (3) is sufficient and

necessary for having J1 < γ.
Sufficiency. From (2) and (3b),

J1 = −ηTz CA−1Bw1nw
+ ηTz Dw1nw

< −ηTz CA−1Bw1nw + γ − ηTz Cs
= γ − ηTz CA−1(Bw1nw

+As)

= γ − ηTz C(−A−1)(−Bw1nw
−As).

Notice that C(−A−1)(−Bw1nw
−As) �Pz

0 from (3a) due
to the fact that −A−1 is Px-nonnegative and CPx ⊆ Pz .
It follows that ηTz C(−A−1)(−Bw1nw − As) > 0. Hence
J1 < γ.

Necessity. Suppose J1 < γ. Choose s = −(1 +
ε)A−1Bw1nw with a sufficiently small ε > 0 such that

ηTz (Cs+Dw1nw
)

=− ηTz CA−1Bw1nw + ηTz Dw1nw − εηTz CA−1Bw1nw

=J1 − εηTz CA−1Bw1nw
< γ.

By considering that −A−1 is Px-nonnegative, s �Px
0

holds. Finally

As+Bw1nw = −εBw1nw ≺Px 0.

Hence (3) is verified.
Remark 2: Note that condition (3) is made up of linear

inequalities and can be checked through standard linear
programming tools.

In the following, two algorithms are provided to design a
state-feedback gain K such that, with u(t) = Kx(t),

(i) the closed-loop system is stable and cone-invariant with
respect to (Rnw

+ ,Px,Pz).
(ii) J1 < γ for a given γ > 0.

Theorem 1 (Nonlinear programming): Given Px,Pz , a
scalar γ > 0 and system Ξ with x0 = 0, assume that
the open-loop system Ξ is cone-invariant with respect to
(Rnw

+ ,Px,Pz). Then a state-feedback gain K ensuring (i)
and (ii) exists if and only if there exist a strictly positive
diagonal matrix S ∈ Rmx×mx and a matrix H ∈ Rnu×mx

satisfying

Fx(AVxS +BH)1mx + FxBw1nw ≺ 0, (4a)
Fx(AVxS +BH + αVxS) � 0, (4b)

Fz(CVxS +DH) � 0, (4c)

ηTz (CVxS +DH)1mx
+ ηTz Dw1nw

< γ, (4d)

for some nonnegative scalar α, and such that

H = KVxS (5)

admits a feasible solution K. Such a solution provides an
admissible state feedback gain K.

Proof: Sufficiency. Let S � 0 diagonal and H satisfy
the constraint (4), K be such that (5) holds, and s =
VxS1mx �Px 0. Then

Fx(A+BK)s+ FxBw1nw ≺ 0, (6a)
Fx(A+BK + αInx)VxS � 0, (6b)

Fz(C +DK)VxS � 0, (6c)

ηTz [(C +DK)s+Dw1nw
] < γ. (6d)

According to Lemma 4 and (6b), A+BK is cross-positive on
Px. And (6c) indicates that (C +DK)Px ⊆ Pz . Moreover,
the cone-invariance of the open-loop system Ξ guarantees
that Bw1nw ∈ Px. Then from (6a), one can obtain that

(A+BK)s ≺Px
−Bw1nw

≺Px
0,
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which implies that A+BK is Hurwitz, see Lemma 5. Thus
J1 < γ by applying Proposition 1 and taking into account
(6d).

Necessity. Let K be such that (i) and (ii) are satisfied.
Then, in view of Lemmas 2, 4 and Proposition 1, there exists
a vector s �Px 0 such that

(A+BK)s+Bw1nw
≺Px

0,

Fx(A+BK + αInx
)Vx � 0,

Fz(C +DK)Vx � 0,

ηTz [(C +DK)s+Dw1nw
] < γ.

Since s �Px
0, it can be written as s = VxS1mx

with
S diagonal and strictly positive. By letting H = KVxS, the
proof is concluded.

Theorem 2 (Linear programming): Given Px,Pz , a
scalar γ > 0 and system Ξ with x0 = 0, assume that
the open-loop system is cone-invariant with respect to
(Rnw

+ ,Px,Pz). A state-feedback gain K ensuring (i) and
(ii) exists if there exist a strictly positive diagonal matrix
S̃ ∈ Rmx×mx and a matrix H̃ ∈ Rnu×mx satisfying

(Ã S̃ + FxBH̃)1mx + FxBw1nw ≺ 0, (7a)

Ã S̃ + FxBH̃ + αS̃ � 0, (7b)

C̃ S̃ + FzDH̃ � 0, (7c)

η̃Tz (C̃ S̃ + FzDH̃)1mx + η̃Tz FzDw1nw < γ, (7d)

for some nonnegative scalar α, where the matrix Ã is Metzler
and such that FxA = ÃFx, matrix C̃ and vector η̃z are
nonnegative and such that FzC = C̃Fx and ηz = FT

z η̃z .
An admissible state-feedback gain K is then obtained from
K = H̃ S̃−1Fx.

Proof: Define x̃(t) = Fxx(t), z̃(t) = Fzz(t) and
consider the system

Ξ̃ :
˙̃x(t) = Ãx̃(t) + FxBu(t) + FxBww(t)

z̃(t) = C̃x̃(t) + FzDu(t) + FzDww(t)

Denote by z̃[k](t) the associated impulse response. It follows
that z̃[k](t) = Fzz

[k](t). Then

J1 =

nw∑
k=1

∫ ∞
0

ηTz z
[k](t)dt =

nw∑
k=1

∫ ∞
0

η̃Tz z̃
[k](t)dt.

By letting K̃ = H̃ S̃−1 be the state-feedback gain of system
Ξ̃, condition (7) is equivalent to

(Ã+ FxBK̃)S̃1mx
+ FxBw1nw

≺ 0,

(Ã+ FxBK̃ + αImx
)S̃ � 0,

(C̃ + FzDK̃)S̃ � 0,

η̃Tz (C̃ + FzDK̃)S̃1mx
+ η̃Tz FzDw1nw

< γ,

which indicates that Ã + FxBK̃ is Metzler and Hurwitz.
Notice that K = K̃Fx. Then Ã + FxBK̃ being Metzler
and Hurwitz implies A + BK being cross-positive and
Hurwitz. Moreover, Fz(C + DK) = (C̃ + FzDK̃)Fx and

C̃ + FzDK̃ � 0, so that the closed-loop system is cone-
invariant with respect to (Rnw

+ ,Px,Pz). Finally, J1 < γ
follows immediately from the last inequality.

Remark 3: Note that due to the cone-invariance of the
open-loop system Ξ and ηz ∈ P∗z , Ã, C̃ and η̃z must exist
and are usually not unique. Linear programming tools are
efficient in computing them.

Remark 4: It is remarkable that the results on the impulse
response expressed by Proposition 1 and Theorems 1 and 2
can be also used to analyze the free response performance
index

J1(x0) =

∫ ∞
0

ηTx x(t)dt,

where ηx ∈ P∗x , x0 ∈ Px is an arbitrary initial state and
disturbance w(t) = 0.

Indeed, the statements regarding J1(x0) can be derived
straightforwardly from those of Proposition 1 and Theorems
1 and 2 by letting nw = 1, C = Inx , Dw = D = 0 and
replacing the following symbols: Bw = x0, ηz = ηx, Fz =
Fx.

IV. MEAN PERFORMANCE IN L1 FOR MJLS

In this section, we extend the results obtained for a
deterministic system Ξ to a cone-invariant MJLS ΞM by
introducing an equivalent average deterministic system in the
following form:

Ξ̂M :
˙̂
X(t) = ÂX̂(t) + B̂ww(t)

E [z(t)] = ĈX̂(t) + D̂ww(t)

where

xi(t) = E [x(t)Irt=i] ,

X̂(t) = col{xi(t)}, X̂(0) = π̄ ⊗ x0,

Â = ΛT ⊗ Inx + diag{Ai}, B̂w =


Bw1[π̄]1
Bw2[π̄]2
· · ·

BwN [π̄]N


Ĉ = [C1 C2 . . . CN ], D̂w =

N∑
i=1

Dwi[π̄]i,

(8)

The symbol IE stands for the Dirac measure of the event
E (see [2]), and all expectations are taken with respect to
the stationary distribution π̄. System Ξ̂M describes the time
evolution of the expected output when the disturbance is
deterministic. Further discussion on this system can be found
in [12] and [22].

According to Lemma 6, Â is cross-positive on PN
x if and

only if Ai is cross-positive on Px. Moreover, B̂wPw ⊆ PN
x ,

ĈPN
x ⊆ Pz , D̂wPw ⊆ Pz if and only if BwPw ⊆ Px,

CPx ⊆ Pz , DwPw ⊆ Pz . Thus systems ΞM and Ξ̂M are
equivalent in regard to mean stability and cone-invariance.

Consider system ΞM with a zero initial state and let
w(t) = δ(t)ek, k = 1, 2, . . . , nw, Pw = Rnw

+ . Denote the
associated response with z[k](t), and define the expected
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performance index as

J1E = E

[
nw∑
k=1

∫ ∞
0

ηTz z
[k](t)dt

]
, (9)

where ηz ∈ P∗z .
First we characterize the index J1E for an open-loop

system, i.e. with u(t) = 0.
Proposition 2: Given Px,Pz and MJLS ΞM with x0 =

0, u(t) = 0, assume that ΞM is mean stable and cone-
invariant with respect to (Rnw

+ ,Px,Pz). Then the perfor-
mance index (9) can be computed as

J1E = −ηTz ĈÂ−1B̂w1nw
+ ηTz D̂w1nw

, (10)

where Â, B̂w, Ĉ and D̂w are defined in (8).
Moreover, given a scalar γ > 0, J1E < γ if and only if

there exist vectors si �Px
0, i ∈ S such that

Aisi +

N∑
j=1

λjisj +Bwi[π̄]i1nw
≺Px

0, (11a)

N∑
i=1

ηTz (Cisi +Dwi[π̄]i1nw) < γ. (11b)

Proof: By considering the equivalent system Ξ̂M , (10)
holds according to Proposition 1.

Moreover, J1E < γ if and only if there exists a vector
s �PN

x
0 such that

Âs+ B̂w1nw
≺PN

x
0,

ηTz (Ĉs+ D̂w1nw
) < γ.

The proof can be concluded by letting s = col{si} with
si �Px

0 for each i ∈ S.
Note that condition (11) is expressed as linear inequalities

and can be checked through standard linear programming
tools.

In the following, two algorithms are provided to design
state-feedback gains Ki such that, with u(t) = Kix(t),

(i) the closed-loop system ΞM is mean stable and cone-
invariant with respect to (Rnw

+ ,Px,Pz).
(ii) J1E < γ for a given γ > 0.

The proofs are similar to those of Theorems 1 and 2 and
are therefore omitted.

Theorem 3 (Nonlinear programming): Given Px,Pz , a
scalar γ > 0 and MJLS ΞM with x0 = 0, assume
that the open-loop system is cone-invariant with respect to
(Rnw

+ ,Px,Pz). State-feedback gains Ki ensuring (i) and (ii)
exist if and only if there exist strictly positive diagonal
matrices Si ∈ Rmx×mx and matrices Hi ∈ Rnu×mx , i ∈ S
satisfying

Fx(AiVxSi+BiHi+

N∑
j=1

λjiVxSj)1mx
+FxBwi[π̄]i1nw

≺0,

Fx(AiVxSi +BiHi + αVxSi) � 0,

Fz(CiVxSi +DiHi) � 0,
N∑
i=1

ηTz [(CiVxSi +DiHi)1mx
+Dwi[π̄]i1nw

] < γ,

for some nonnegative scalar α, and such that, for each i ∈ S,

Hi = KiVxSi

admit feasible solutions Ki, i ∈ S. Such solutions provide
admissible state-feedback gains Ki, i ∈ S.

Theorem 4 (Linear programming): Given Px,Pz , a
scalar γ > 0 and MJLS ΞM with x0 = 0, assume that
the open-loop system is cone-invariant with respect to
(Rnw

+ ,Px,Pz). State-feedback gains Ki ensuring (i) and
(ii) exist if there exist strictly positive diagonal matrices
S̃i ∈ Rmx×mx and matrices H̃i ∈ Rnu×mx , i ∈ S such that

(Ãi S̃i+FxBiH̃i+

N∑
j=1

λjiS̃j)1mx
+ FxBwi[π̄]i1nw

≺0,

Ãi S̃i + FxBiH̃i + αS̃i � 0,

C̃i S̃i + FzDiH̃i � 0,
N∑
i=1

η̃Tz [(C̃i S̃i + FzDiH̃i)1mx
+ FzDwi[π̄]i1nw

] < γ,

for some nonnegative scalar α, where matrices Ãi are
Metzler and such that FxAi = ÃiFx, matrices C̃i and vector
η̃z are nonnegative and such that FzCi = C̃iFx, ηz = η̃zF

T
z .

Admissible state feedback gains Ki are then obtained from
Ki = H̃i S̃

−1
i Fx.

Remark 5: The performance analysis results on impulse
response of MJLS can be also used to analyze the free
response performance index

J1E(x0) = E

[∫ ∞
0

ηTx x(t)dt

]
,

where ηx ∈ P∗x , x0 ∈ Px is an arbitrary initial state and the
disturbance w(t) = 0, by letting nw = 1, Ci = Inx

, Dwi =
Di = 0 and replacing the following symbols in Proposition
2 and Theorems 3 and 4:

Bwi = x0, ηz = ηx, Fz = Fx.

Remark 6: In this paper, the state-feedback design prob-
lem is solved by two methods. The first one gives a full
parameterization of all admissible gains but is a nonlinear
programming problem. While the second one is expressed
in the form of linear programming, possessing a numerical
advantage, but is more conservative.

Remark 7: It is worth emphasizing that if the c-matrix
Fx is square and invertible (equivalently, Vx is square and
invertible), the nonlinear constraints in Theorems 1 and 3
are always satisfied and the two algorithms (nonlinear one
and linear one) will be equivalent. In particular, if Fx =
Inx , Fz = Inz , then Px = Rnx

+ ,Pz = Rnz
+ , thus leading to

the results obtained in this paper applicable to PMJLS (see
e.g. [12]); in other words, the proposed results can be viewed
as a generalized form of those valid for PMJLS.
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V. NUMERICAL EXAMPLES

In this section, we consider polyhedral cones Px,Pw,Pz

with the following parameters:

Fx =


1 0 0
0 1 0
1 1 1
1 1 −1

 , Fz =

[
3 1
2 −1

]

and Pw = R2
+. In the following two subsections, the

state-feedback controllers for deterministic system Ξ and
MJLS ΞM will be designed by using nonlinear programming
and linear programming. The Matlab function “fmincon”
and “linprog” are used to solve the nonlinear optimization
problem and linear optimization problem, respectively.

A. Deterministic system

Consider a system Ξ described by:

A =

−0.7 0.2 0.1
0.3 −0.8 0
−0.1 0.4 −0.9

 , B =

 0.3 0.4
0.1 −0.5
−0.2 0.7

 ,
Bw =

 1.2 1.3
0.7 0.1
−0.1 −0.5

 , C =

[
1.7 1.5 0.2
0.3 −0.5 −0.3

]
,

D =

[
0.5 0.2
0.2 0.1

]
, Dw =

[
1 0.2

0.1 0.1

]
.

Example 1 (Impulse response): Consider a zero initial
state and ηz = [3 1]T for system Ξ with impulse disturbance.
Our aim is to design a state-feedback controller u(t) =
Kx(t) such that the closed-loop system Ξ is stable, cone-
invariant with respect to (R2

+,Px,Pz) and the performance
J1 is minimized. In order to minimize J1, we minimize its
upper bound γ instead. Table I gives the optimization results
regarding two methods.

Example 2 (Free response): Consider a given initial state
x0 = [2 4 1]T , ηx = [2 3 2]T , and assume the disturbance
w(t) = 0. Recalling Remark 4 and replacing the related
symbols in Theorems 1 and 2, a state-feedback controller
u(t) = Kx(t) can be designed such that the closed-loop
system Ξ is stable, cone-invariant with respect to Px and
the free response performance J1(x0) is minimized. The
optimization results are given in Table I.

It can be concluded that, in both cases, the nonlinear
programming method provided a better performance index
than the linear programming method.

B. MJLS

In this subsection, we consider a two-mode MJLS ΞM

with the following parameters:

mode 1:

A1 =

−0.7 0.2 0.1
0.3 −0.8 0
−0.1 0.4 −0.9

 , Bw1 =

 1.2 1.3
0.7 0.1
−0.1 −0.5

 ,
B1 =

0.3
0.1
0.2

 , C1 =

[
1.7 1.5 0.2
0.3 −0.5 −0.3

]
,

Dw1 =

[
1 0.2

0.1 0.1

]
, D1 =

[
0.5
0.2

]
;

mode 2:

A2 =

−0.8 0.3 0.1
0.3 −0.5 0
−0.3 0.5 −1

 , Bw2 =

 1 1.3
0.7 0.5
−0.1 −0.6

 ,
B2 =

0.3
0.3
0.2

 , C2 =

[
1.5 1.5 0.2
0.3 −0.8 −0.3

]
,

Dw2 =

[
0.5 0.6
0.2 0.1

]
, D2 =

[
0.4
0.3

]
.

The transition rate matrix is Λ =

[
−2 2
2 −2

]
.

Example 3 (Impulse response): Consider system ΞM

with a zero initial state and ηz = [4 1]T . A state-feedback
controller u(t) = Kix(t) is designed by using nonlinear
and linear programming so that the closed-loop system is
mean stable, cone-invariant with respect to (R2

+,Px,Pz)
and the upper bound of J1E , i.e. γ, is minimized. Table II
gives the optimization results by using nonlinear and linear
algorithms.

Example 4 (Free response): Consider an initial state
x0 = [2 3 1]T , ηx = [2 3 2]T for system ΞM and assume
that w(t) = 0. Recalling Remark 5 and replacing the related
symbols in Theorems 3 and 4, we can design a state-feedback
controller u(t) = Kix(t) such that the closed-loop system is
mean stable, cone-invariant with respect to Px and the upper
bound of performance J1E(x0) is minimized. Table II gives
the optimization results.
For the optimal solutions J1E(x0) and J1E obtained by two
different methods, it is apparent that nonlinear programming
provided a more desirable solution than linear programming.

VI. CONCLUSION

In this paper we have analyzed the L1 performance
measures of the impulse response for MJLS with cone-
invariance. A necessary and sufficient condition to char-
acterize the performance index for deterministic systems
is worked out first, and then extended to MJLS by con-
structing an equivalent deterministic system. Two viable
methods (nonlinear programming and linear programming)
in designing a state-feedback controller are derived to ensure
the cone-invariance, mean stability and performance being
upper bounded for the closed-loop MJLS. Both of them have
advantages and disadvantages: the nonlinear one provides a
full parametrization of all admissible gains and a preferable
performance index while the linear one possesses a numerical
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TABLE I
OPTIMIZATION RESULTS WITH FREE RESPONSE AND IMPULSE RESPONSE FOR DETERMINISTIC SYSTEM

Nonlinear programming Linear programming
Solver fmincon linprog

Impulse response
K

[
−2.4498 −0.1127 −0.3873
−0.5327 0.3452 −0.7202

] [
−0.6974 −0.6974 0.1974
0.0230 0.0230 −0.3980

]
γmin 11.0235 20.5065
J1 11.0235 20.5065

Free response
K

[
5.2708 −7.8333 7.3333
−5.5625 5.3750 −5.7500

] [
−0.6974 −0.6974 0.1974
0.0230 0.0230 −0.3980

]
γmin 27.2654 29.7578
J1(x0) 27.2654 29.7578

TABLE II
OPTIMIZATION RESULTS WITH FREE RESPONSE AND IMPULSE RESPONSE FOR MJLS

Nonlinear programming Linear programming
Solver fmincon linprog

Impulse response

K1 [−1.75 1.25 −1.25] [−0.1667 − 0.1667 0.1667]
K2 [−0.2917 − 0.8333 − 0.1667] [−0.5625 − 0.5625 − 0.4375]
γmin 31.6859 35.7489
J1E 31.6856 34.1768

Free response

K1 [−0.3334 − 0.1666 0.1666] [−0.1667 − 0.1667 0.1667]
K2 [−0.2917 − 0.8333 − 0.1667] [−0.5625 − 0.5625 − 0.4375]
γmin 29.8578 30.6610

J1E(x0) 29.8577 30.6610

advantage but is more conservative. In perspective, further
investigation on L∞-induced norm is foreseen.
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