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Abstract— Introduced for finite-dimensional systems by Fran-
cis and Wonham in the mid 70’s, the internal model principle
states that a stabilizing controller achieves asymptotic output
tracking and disturbance rejection robustly if and only if it
contains a p-copy of the exosystem frequencies, where p is the
dimension of the output space of the plant. Later, the internal
model principle has been extended, e.g., to boundary control
systems on multidimensional spatial domains, and in this setting
it follows from the principle that every robust output regulator
is necessarily infinite-dimensional. However, it was recently
established by the authors that robust approximate output
tracking can be achieved with a finite-dimensional controller,
and in the present paper, we formulate an internal model
for this purpose. The efficiency of the method is numerically
demonstrated using the heat equation on the unit square in R2

with boundary control and boundary observation.
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I. INTRODUCTION

The objective in robust output regulation is to design a
control law for a given system in such a way that the output
y(t) of the system would converge asymptotically to a given
reference signal yref (t). Furthermore, a robust controller
should also reject any external disturbance signal d(t) and
allow perturbations and uncertainties in the parameters of the
system.

The internal model principle is the key to understanding
how a controller can be robust. The principle indicates that
a controller can solve the robust output regulation problem
if (and only if) it contains a sufficient internal model of the
dynamics of the exosystem that generates the disturbance
and reference signals. The internal model principle was first
introduced in the context of finite-dimensional systems by
Francis and Wonham [3], [4]. Since then, the principle has
been extended to infinite-dimensional systems, e.g., in [5], [8],
[10], [13]. Most recently, the principle has been generalized
to regular linear systems in [11] and to boundary control
systems in [6], [7].
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While the internal model principle does give the character-
ization of all robust regulating controllers for a large class
of systems, in some cases the limitations set by practice may
hinder the construction of such controllers. For example, if the
output space of the system is infinite-dimensional, any robust
controller for such a system is necessarily infinite-dimensional
by the internal model principle. This has given rise to the
novel concept of approximate robust output regulation, where,
by relaxing the asymptotic accuracy of the output regulation,
it is possible to construct finite-dimensional robust controllers
even for systems with infinite-dimensional output spaces.
Such approximate robust controllers have been constructed
in recent papers [6], [9].

As the main contribution of this paper, by mimicking the
internal model principle, we present sufficient conditions for
a controller to solve the approximate robust output regulation
problem. The conditions are stated as a modification of
the G-conditions [5, Def. 10] in Definition 3. In our main
result (Theorem 4), we will derive an upper bound for the
regulation error e(t) := y(t)− yref (t), and show that it can
be made arbitrarily small (Remark 5). Finally, we will present
a controller structure for approximate robust output regulation
by utilizing our main result. The results are presented for
boundary control systems with infinite-dimensional output
spaces, for which the proposed methodology is especially
suited. For simplicity, we will make the additional assumption
that the plant is initially exponentially stable.

The structure of the paper is as follows. In Section II,
we present the plant, exosystem and controller. In Section
III, we present the robust output regulation problem and the
internal model principle as a background to their approximate
counterparts which will be presented in Sections IV and IV-
A. In Section IV-B, we will present a controller structure
for approximate robust regulation, and in Section V, we
will construct such a controller for the heat equation on
a rectangular domain. Finally, in Section VI, the paper is
concluded.

Here L(X,Y ) denotes the set of bounded linear operators
from a normed space X to a normed space Y . The domain,
range, kernel, spectrum and resolvent of a linear operator
A are denoted by D(A), R(A), N (A), σ(A) and ρ(A),
respectively. The resolvent operator is defined for all s ∈ ρ(A)
by R(s,A) := (s−A)−1.
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II. THE PLANT, EXOSYSTEM AND CONTROLLER

The plant is given on a domain Ω ⊂ Rn by the following
equations:

ẋ(t) = Ax(t), x(0) = x0 (1a)
Bx(t) = R1u(t) +R2d(t) (1b)
Cx(t) = y(t), (1c)

where the disturbance signal d(t) is assumed to be generated
by an exosystem that will be presented shortly. The operators
(A,B) are defined such that they form a boundary control
system [2, Def. 3.3.2]:

Definition 1: Let the state-space X and the input space U
be Hilbert spaces and let A : X ⊃ D(A)→ X and B : X ⊃
D(B) → U be linear operators such that D(A) ⊂ D(B).
The system (1a)–(1b) is a boundary control system if the
following hold:

1) The restriction A := A|N (B) of A to the kernel of B
generates a C0-semigroup on X .

2) There is an operator B ⊂ L(U,X) such that
R(BR1) ⊂ D(A), ABR1 ∈ L(U,X) and BB = IU .

For the output, define the operator C : D(A) ⊂ D(C)→ Y
for some (infinite-dimensional) Hilbert space Y with the prop-
erties that C ∈ L(D(A), Y ), where D(A) is equipped with
the graph norm of A, and CBR1 ∈ L(U, Y ). Furthermore,
we assume that C is an admissible [14, Def. 4.3.1] observation
operator for A and for simplicity that A is the generator of an
exponentially stable C0-semigroup. Finally, R1 and R2 are
arbitrary restrictions to parts of the boundary ∂Ω accessible
via B.

Let W := Cq and S = diag(iω1, iω2, . . . , iωq) for some
q ∈ N such that ωk ∈ R and ωk 6= ωj for k 6= j. Further
let E ∈ L(W,U) and F ∈ L(W,Y ). The exosystem that
generates the disturbance signal d(t) and the reference signal
yref (t) is given by

v̇(t) = Sv(t), v(0) = v0 (2a)
d(t) = Ev(t) (2b)

yref (t) = −Fv(t). (2c)

At this point, we present the transfer function of the plant
(from u to y) by

P (s) = CR(s,A)(AB − sB)R1 + CBR1, s ∈ ρ(A).

For robust output regulation to be achievable, it is required that
the transfer function P (s) is surjective for every eigenvalue
iωk of S. Thus, we make the rather standard assumption
about the surjectivity of the transfer function, even though it
is not necessarily required for achieving approximate robust
output regulation.

The controller to be constructed is a linear system on a
Banach space Z and of the form

ż(t) = G1z(t) + G2e(t), z(0) = z0 (3a)
u(t) = Kz(t), (3b)

where e(t) := y(t) − yref (t) denotes the regulation error,
and G1 ∈ L(Z), G2 ∈ L(Y,Z) and K ∈ L(Z,U) are to be
chosen later on.

When the plant, exosystem and controller are connected,
they form a closed-loop system (see [6, Sec. 3] for the
derivation and technical details). Define a new state variable
by

xe :=

[
1 −BR1K
0 1

] [
x
z

]
−
[
BR2Ev

0

]
.

The closed-loop system can be presented in the extended
state-space Xe := X × Z as

ẋe(t) = Aexe(t) +Bev(t), xe(0) = (x0, z0) (4a)
e(t) = Cexe(t) +Dev(t). (4b)

where

Ae =

[
A−BR1KG2C ABR1K −BR1KG′1

G2C G′1

]
Be =

[
ABR2E −BR2ES −BR1KG2(CBR2E + F )

G2(CBR2E + F )

]
Ce =

[
C CBR1K

]
, De = CBR2E + F,

where we denote G′1 = G1 + G2CBR1K for brevity. The
operator Ae has domain D(Ae) = D(A) × Z. Due to the
assumptions made on the parameters of the plant, exosystem
and controller, the closed-loop system is a regular linear
system (see [6, Thm. 3.1]).

III. THE ROBUST OUTPUT REGULATION PROBLEM AND
THE INTERNAL MODEL PRINCIPLE

In order to present the robust output regulation problem,
consider the perturbations

(
Ã, B̃, C̃, Ẽ, F̃

)
∈ O of the

operators (A,B, C, E, F ) where the class O of admissible
perturbations is such that

(i) the perturbed plant
(
Ã, B̃, C̃

)
is a boundary control

system,
(ii) the operator C̃ is admissible for Ã := Ã|N (B̃),

(iii) the eigenvalues of S are in the resolvent of Ã, i.e.,
{iωk}qk=1 ⊂ ρ

(
Ã
)

,

(iv) the operators Ẽ and F̃ are bounded.
These conditions are in particular satisfied for all sufficiently
small bounded perturbations of the plant (A,B, C) and for
all bounded perturbations of E and F .

The Robust Output Regulation Problem. Choose the
controller (G1,G2,K) in such a way that the following are
satisfied:

1) The closed-loop semigroup generated by Ae is expo-
nentially stable.

2) For all initial states xe0 ∈ Xe and v0 ∈ W , the
regulation error satisfies eα·e(·) ∈ L2([0,∞);Y ) for
some α > 0 independent of xe0 and v0.

3) If the operators (A,B, C, E, F ) are perturbed to(
Ã, B̃, C̃, Ẽ, F̃

)
∈ O in such a way that the closed-

loop system remains exponentially stable, then for all
initial states xe0 ∈ Xe and v0 ∈W , the regulation error
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satisfies eα
′·e(·) ∈ L2([0,∞);Y ) for some α′ > 0

independent of xe0 and v0.
We note that without the last item in the preceding list, i.e.,
the robustness requirement, the problem is called the output
regulation problem.

The internal model principle can be expressed in the form
of the G-conditions [5, Def. 10]

R(iωk − G1) ∩R(G2) = {0} , ∀k ∈ {1, 2, . . . , q} (5a)
N (G2) = {0}, (5b)

and hence, the G-conditions can be used to characterize all
robust regulating controllers. For boundary control systems,
the result is given in [6, Thm. 4.7], [7, Thm. 4]:

Theorem 2: Assume that the closed-loop system is regular
and exponentially stabilized by a controller (G1,G2,K). Then
the controller solves the robust output regulation problem if
and only if it satisfies the G-conditions.

The rank-nullity theorem and the second G-condition imply
that dimZ ≥ dimR(G2) = dimY . Thus, for every system
with an infinite-dimensional output space Y , every robust
regulating controller is necessarily infinite-dimensional by
Theorem 2. However, robust output regulation can still be
achieved in an approximate sense by a finite-dimensional
controller, which brings us to the concept of approximate
robust output regulation considered in the following section.

IV. APPROXIMATE ROBUST OUTPUT REGULATION

Consider the following problem originally presented in [6,
Sec. 4]:

The Approximate Robust Output Regulation Problem.
For a given δ > 0, choose the controller (G1,G2,K) in
such a way that the following are satisfied:

1) The closed-loop system generated by Ae is exponen-
tially stable.

2) For all initial states xe0 ∈ Xe, v0 ∈W , the regulation
error satisfies
t+1∫
t

‖e(s)‖2ds ≤Me−αt
(
‖xe0‖2 + ‖v0‖2

)
+ δ‖v0‖2

for some M,α > 0 independent of xe0 ∈ Xe, v0 ∈W .
3) If the operators (A,B, C, E, F ) are perturbed to

(Ã, B̃, C̃, Ẽ, F̃ ) ∈ O in such a way that the closed-loop
system remains exponentially stable, then there exists a
δ′ > 0 such that for all initial states xe0 ∈ Xe, v0 ∈W
the regulation error satisfies
t+1∫
t

‖e(s)‖2ds ≤M ′e−α
′t
(
‖xe0‖2 + ‖v0‖2

)
+δ′‖v0‖2

for some M ′, α′ > 0 independent of xe0, v0.
Essentially, the problem formulation implies that for the
unperturbed system, asymptotically the regulation error can
be made smaller than δ‖v0‖2 for any given δ > 0. However,
when the system is perturbed, there is no requirement that
the asymptotic error is less than δ‖v0‖2 but merely bounded.

We will essentially approach the concept of approximate ro-
bust output regulation by considering robust output regulation
on a closed subspace of Y . Consider a partition Y = Y0⊕Y1
with Y0, Y1 6= {0}. We will give sufficient conditions for a
controller to solve the robust output regulation problem on
Y0. For systems with infinite-dimensional output spaces, the
partition Y = Y0 ⊕ Y1 can be chosen such that a controller
that solves the robust output regulation problem on the finite-
dimensional subspace Y0 also solves the approximate robust
output regulation problem. This will be discussed in more
detail in Remark 5.

A. A Partial Internal Model

The concept of an internal model for approximate robust
output regulation is presented in the following definition.
Note that we omit the (classical) case Y1 = {0} as then
the controller would contain the full internal model of the
dynamics of the exosystem. Conversely, the case Y0 = {0}
is omitted as then the controller would contain no internal
model whatsoever.

Definition 3: Let Y = Y0 ⊕ Y1 with Y0, Y1 6= {0}. The
controller (G1,G2,K) contains an internal model on Y0 of
the dynamics of the exosystem if

R(iωk − G1) ∩R(G2) = {0} , ∀k ∈ {1, 2, . . . , q} (6a)
N (G2) ⊂ Y1. (6b)

In the following theorem, we will present an upper bound
for the regulation error when a controller is constructed such
that it satisfies Definition 3 for some partition Y = Y0 ⊕ Y1.
After presenting the result, we will comment on how it can
be utilized in constructing a controller for approximate robust
output regulation.

Theorem 4: Assume that a controller (G1,G2,K) expo-
nentially stabilizes the closed-loop system. If the controller
satisfies Definition 3 for some partition Y = Y0 ⊕ Y1,
then there exist M,α > 0, such that for all initial states
xe0 ∈ Xe, v0 ∈W , the regulation error satisfies

t+1∫
t

‖e(s)‖2ds ≤Me−αt
(
‖xe0‖2 + ‖v0‖2

)
+ ‖(I −Q)(CeΣ +De)‖2‖v0‖2,

where Q a projection onto Y0 along Y1 and Σ ∈ L(W,Xe)
is the unique solution of the Sylvester equation ΣS = AeΣ +
Be. The corresponding estimate holds for all perturbations(
Ã, B̃, C̃, Ẽ, F̃

)
∈ O that give rise to an exponentially stable

closed-loop system.
Proof: Let (Ã, B̃, C̃, Ẽ, F̃ ) ∈ O be such that the closed-

loop semigroup T̃e generated by Ãe is exponentially stable.
Due to the assumptions on the classO of perturbations and the
regularity of the unperturbed closed-loop system, it follows
that the perturbed closed-loop system is regular as well. Thus,
as σ(S) ⊂ iR, the Sylvester equation Σ̃S = ÃeΣ̃ + B̃e has
a unique solution Σ̃ :=

(
Π̃, Γ̃

)
∈ L(W,Xe) by [12], and by

[11, Lem. 4.3], the regulation error can be written as

e(t) = C̃eT̃e(t)(xe0 − Σ̃v0) +
(
C̃eΣ̃ + D̃e

)
v(t). (7)
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Let k ∈ {1, 2, . . . , q} be arbitrary and apply the Sylvester
equation to the kth eigenvector φk of S associated with the
eigenvalue iωk. We obtain Σ̃Sφk = ÃeΣ̃φk + B̃eφk, i.e.,
(iωk − Ãe)Σ̃φk = B̃eφk, which yields[

(iωk − Ã+ B̃R1KG2C̃)Π̃φk −
(
ÃB̃R1K − B̃R1KG̃′1

)
Γ̃φk

−G2C̃Π̃φk + (iωk − G̃′1)Γ̃φk

]

=

ÃB̃R2Ẽ − B̃R2ẼS − B̃KG2
(
C̃B̃R2Ẽ + F̃

)
G2
(
C̃B̃R2Ẽ + F̃

) φk,
where G̃′1 = G1 + G2C̃B̃R1K. The second line implies

(iωk − G1)Γ̃φk

= G2
(
C̃Π̃φk + C̃B̃R1KΓ̃φk + (C̃B̃R2Ẽ + F̃ )φk

)
,

and now by Definition 3 we have

Y1 3 C̃Π̃φk + C̃B̃R1KΓ̃φk + (C̃B̃R2Ẽ + F̃ )φk

= C̃eΣ̃φk + D̃eφk.

Since {φk}qk=1 is the Euclidean basis for W , we obtain that

Q
(
C̃eΣ̃ + D̃e

)
= 0. (8)

Finally, we obtain by (7) that for all t ≥ 0

t+1∫
t

‖e(s)‖2ds

=

t+1∫
t

‖C̃eT̃e(xe0 − Σ̃v0) + (C̃eΣ̃ + D̃e)v(t)‖2ds

≤M ′e−α
′t(‖xe0‖2 + ‖v0‖2) + ‖C̃eΣ̃ + D̃e‖2‖v0‖2

for some M ′, α′ > 0 as Σ̃ is bounded, T̃e is exponentially
stable, C̃e is admissible for Ãe, and due to the structure of
the signal generator ‖v(t)‖ = ‖eStv0‖ = ‖v0‖. Combining
the preceding with (8), we obtain that

t+1∫
t

‖e(s)‖2ds ≤M ′e−α
′t
(
‖xe0‖2 + ‖v0‖2

)
+ ‖(I −Q)(C̃eΣ̃ + D̃e)‖2‖v0‖2,

which concludes the proof.
Remark 5: Considering the term ‖(I −Q)(CeΣ +De)‖2

in the preceding theorem, since W is finite-dimensional there
exists a unit vector vM ∈ W such that ‖CeΣ + De‖ =
‖CeΣvM +DevM‖Y , where CeΣvM +DevM := yM is an
element of Y . Now consider an orthonormal basis {ψk}∞k=1

of Y so that we may write yM =

∞∑
k=1

〈yM , ψk〉Y ψk. If

the partition Y = Y0 ⊕ Y1 is chosen such that Y0 =
span{ψk | k ∈ 1, 2, . . . , N0} for some N0 ∈ N, we have
that ‖(I −Q)yM‖Y → 0 as N0 →∞. Thus, for any given
δ > 0 it is possible to choose a sufficiently large N0 such
that ‖(I − Q)(CeΣ + De)‖2 ≤ δ, which then provides a
partition Y = Y0 ⊕ Y1 with a finite-dimensional Y0 such that

a controller satisfying Definition 3 for that partition solves
the approximate robust output regulation problem to precision
δ.

It should be noted that thus far we have merely assumed
that the controller exponentially stabilizes the closed-loop
system, as required when solving the approximate robust
output regulation problem. In the next section, where we
present a controller satisfying Definition 3, we will also show
that it exponentially stabilizes the closed-loop system.

B. Construction of an Approximate Robust Controller

In this section, we will present a controller structure that
solves the approximate robust output regulation problem. The
controller structure is in fact the same as that presented in
[6, Sect. 4.3], but here we will provide a simplified proof by
utilizing Theorem 4 and Remark 5.

Let Y = Y0⊕Y1 such that Y0 is a finite-dimensional closed
subspace of Y and choose Z = Y q0 . Choose the controller
parameters as

G1 = diag (iω1IY0 , iω2IY0 , . . . , iωqIY0) , (9a)

G2 =
(
Gk2
)q
k=1

= (−Q)
q
k=1 , (9b)

K = εK0 = ε
[
K1

0 ,K
2
0 , . . . ,K

q
0

]
, (9c)

where Q is the orthogonal projection onto Y0 and ε > 0 is
the tuning parameter. The parameters Kk

0 can be chosen
freely, albeit such that the controller also stabilizes the
closed-loop system. We will utilize [6, Lem. 4.3] to achieve
exponential stability, and thus, Kk

0 must be chosen such that
σ(QP (iωk)Kk

0 ) ⊂ C+ for all k ∈ {1, 2, . . . , q}. We simply
choose Kk

0 = (QP (iωk))† (the Moore-Penrose pseudoinverse
of QP (iωk)), which is a valid choice due to the assumed
surjectivity of P (iωk) for all k ∈ {1, 2, . . . , q}.

We note that in [6, Lem. 4.3], an extra feed-through term
is required in the controller to exponentially stabilize the
closed-loop system, but as we have assumed the plant to be
exponentially stable, we can utilize [6, Lem. 4.3] without
having the feed-through term in the controller.

Theorem 6: For all δ > 0, there exists an ε∗ > 0 and a
partition Y = Y0 ⊕ Y1 such that for all 0 < ε < ε∗, the
controller (G1,G2,K) with the parameter choices given in
(9) solves the approximate robust output regulation problem.

Proof: The controller exponentially stabilizes the closed-
loop system for all sufficiently small ε > 0 by [6, Lem. 4.3],
and for any δ > 0 the partition Y = Y0 ⊕ Y1 can be chosen
such that ‖(I −Q)(CeΣ +De)‖2 ≤ δ by Remark 5. Thus, it
remains to show that the controller satisfies Definition 3. By
the choice of G2 it is clear thatN (G2) ⊂ Y1 (in fact,N (G2) =
Y1), so it remains to show that R(iωk −G1)∩R(G2) = {0}
for all k ∈ {1, 2, . . . , q}.

Let k ∈ {1, 2, . . . , q} and w = (iωk − G1)z = G2y be
arbitrary for some z ∈ Z, y ∈ Y . The diagonal structure
of G1 implies that necessarily 0 = Gk2 y = −Qy, which
is only possible when y ∈ Y1. This further implies w =
G2y = 0, and since k and w were arbitrary, we have that
R(iωk − G1) ∩ R(G2) = {0}. Thus, by Theorem 4 and
Remark 5, the controller solves the approximate robust output
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regulation problem to precision δ for all sufficiently small
ε > 0.

V. EXAMPLE

In this section, we will use Theorem 6 to construct an
approximate robust regulating controller for the 2D heat
equation on a square Ω := (0, 1)× (0, 1):

ẇ(ξ1, ξ2, t) =
∂2w(ξ1, ξ2, t)

∂ξ21
+
∂2w(ξ1, ξ2, t)

∂ξ22
, (ξ1, ξ2) ∈ Ω

0 ≡ ∂w(·, 1, t)
∂ξ2

≡ −∂w(·, 0, t)
∂ξ2

≡ w(0, ·, t)

u(t) =
∂w(1, ·, t)

∂ξ1
y(t) = w(1, ·, t).

(10)
In order to write the heat equation as a boundary control
system, define the operator A such that Ax = ∇2x with
domain

D(A) = {x ∈ H2(Ω) | ∂nx|ξ2=0 = ∂nx|ξ2=1 = x|ξ1=0 = 0}.

Further define operators B and C such that Bx(t) =
∂nx(1, ·, t) and Cx(t) = x(1, ·, t), so that (10) can be
equivalently written as

ẋ(t) = Ax(t), x(0) = x0,

Bx(t) = u(t) + d(t),

Cx(t) = y(t),

(11)

where we added a disturbance signal d(t) to the plant.
It is relatively easy to see that the operator A := A|N (B)

generates an exponentially stable C0-semigroup, and an
operator B satisfying the criteria of Definition 1 is given
by (Bu)(ξ1, ξ2) = ξ1u. Finally, define the input and output
spaces as U = Y = L2([0, 1]), so that (11) indeed is an
exponentially stable boundary control system (see [1] for
a detailed consideration of the boundary controlled heat
equation).

For the approximate robust output regulation problem, let
δ = 10−4 be given. We choose the partition Y = Y0 ⊕ Y1
such that

Y0 := span {cos(kπ·) | k = 0, 1, . . . , N0 − 1}

for some N0 ∈ N which can essentially be considered an
additional tuning parameter. The orthogonal projection Q
onto Y0 is then given by

Qy := 〈y, 1〉L2([0,1]) +2

N0−1∑
k=1

〈y, cos(kπ·)〉L2([0,1]) cos(kπ·).

By standard Fourier analysis – and as already mentioned in
Remark 5 – for every y ∈ Y , we have

lim
N0→∞

‖(I −Q)y‖L2([0,1]) = 0,

and thus, for any given δ > 0, we may choose N0 such that
the controller solves the approximate robust output regulation
problem.

For the given δ = 10−4, we choose N0 = 15. It should be
noted that determining ‖(I−Q)(CeΣ+De)‖ is not that simple
that it would be easy to state the smallest adequately large N0,
but since we only need to assure ‖(I−Q)(CeΣ+De)‖ ≤ δ, a
sufficiently large N0 will do regardless. In practice, a suitable
N0 can be chosen by trial and error based on numerical
simulations.

Let the reference and disturbance signals be given by

yref (ξ2, t) = 2(ξ22 −
2

3
ξ32) cos(πt)− 1

2
sin(πξ2)

d(ξ2, t) = (ξ2 − 1) sin(πt)

so that S can be chosen as S = diag(−iπ, 0, iπ), and E and
F are chosen such that d = Ev and yref = −Fv. Thus, the
controller parameters are chosen as

G1 = diag(−iπIY0
, 0Y0

, iπIY0
) (12a)

G2 = (−Q)3k=1 (12b)

K = ε
[
(QP (−iπ))†, (QP (0))†, (QP (iπ))†

]
, (12c)

where we choose ε = 0.6 by trial and error to get the stability
margin of the closed-loop system close to its maximal value.

For the simulation, the domain Ω is discretized by a
square mesh of size h = 2−5 and the transfer function P is
approximated using the finite-difference discretized operators.
The initial conditions are x0 = 0, z0 = 0 and v0 = 1. The
simulation results are presented in Figures 1 and 2 where the
norm of the regulation error and the output profile for the
controlled heat equation are displayed, respectively.
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Fig. 1. The regulation error for t ∈ [0, 15].

-1

1

0

10

1

5

0 0

Fig. 2. Output profile for the controlled heat equation for t ∈ [0, 15].

In Figure 1, the norm of the regulation error decreases to
approximately 4 ·10−5, implying that the chosen N0 is indeed
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sufficiently large. The rapid decay rate of the regulation error
can also be observed in Figure 2, where the output profile of
the controlled heat equation is displayed, as the output starts
very rapidly to follow the periodic reference signal. In Figure
3, the state of the controlled heat equation is displayed at
t = 10.

-1

1

1

0

0.5
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Fig. 3. The state of the heat equation at t = 10.

VI. CONCLUSIONS

We considered a partial internal model for approximate
robust output regulation and presented conditions which can
be utilized in the construction of a controller. The considered
system class was boundary control systems with infinite-
dimensional output spaces, for which approximate robust
output regulation is particularly relevant as a classical robust
controller would necessarily be infinite-dimensional. Based on
the presented results, a finite-dimensional approximate robust
regulating controller was constructed for the heat equation on
a square. The performance of the controller was demonstrated
with numerical simulations.
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