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Abstract— A novel method is proposed for solving the opti-
mal Denial-of-Service (DoS) attack scheduling problem against
remote state estimation with energy constraint over the lossy
network. The optimal attack scheduling squence that maximizes
the average expected estimation error over lossy networks is
derived. Details of the technique are outlined.

I. INTRODUCTION

Cyber-Physical Systems (CPS) usually comprise compo-
nents that can implement sensing, control, communication,
and computation. The recent years have seen a surge of
security issues of CPS. CPS are vulnerable to DoS attacks
which may prevent he exchange of useful information among
system components [2]. An attacker that does not have abun-
dant power supply cannot jam the communication channel
all the time [3], [4], [5]. And in wireless networks, it is
inevitable for the data packet to randomly drop. However,
in [3], [4], [5], packet dropouts as the key issue in wireless
communication are neglected. To capture packet dropouts
in wireless links, we consider the lossy network in which
the packet may drop even if the channel is not attacked.
Due to the introduction of the lossy network, it is hard to
deal with the corresponding scenario. In the current work, a
novel approach is proposed to derive the optimal DoS attack
schedule which maximizes the trace of average expected
estimation error covariance over the lossy network.

II. METHODS

Consider a general discrete linear time-invariant (LTI)
process of

xk+1 = Axk +wk,

yk =Cxk + vk.

where k ∈ Z+, xk,wk ∈ Rn and yk,vk ∈ Rm are the process
state vector, the process noise, the measurement vector, and
the measurement noise, respectively, at time k, and wk and
vk are zero-mean i.i.d. Gaussian noises with covariances
Q > 0 and R > 0, respectively. Assuming the pair (A,C) is
observable and (A,

√
Q) is controllable.

Sensors are assumed to be capable of storing data and
performing computations. For time step k, obtaining the
raw data yk, the sensor runs a Kalman filter to obtain
the minimum mean squared error (MMSE) estimate x̂s

k =
E[xk|y1, . . . ,yk], with the corresponding error covariance Ps

k =

E[(xk − x̂s
k)(xk − x̂s

k)
′ |y1, . . . ,yk]. Then the data packet that
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contains the information of x̂s
k is sent from the sensor to

a remote estimator over a lossy network. Consider the state
estimation at the remote estimator side within a finite time
horizon T , with data packets in transit under DoS attacks
λ

∆
= {λ1,λ2, . . . ,λT}.
According to [4] there holds, for the state estimate x̂k at

the remote estimator side,

x̂k = θk(λ )x̂s
k +(1−θk(λ ))Ax̂k−1, k = 1,2, . . . ,T,

where θk = 1 stands for the arrival of data packets and θk = 0
for the opposite, λk = 1 means the attacker imposes the
DoS attack at time k, otherwise λk = 0. The DoS attacker is
assumed to have a limited power supply. Energy limitation
is formulated as ∑

T
k=1 λk = M, where M < T . When the

schedule λ is given, θk’s are assumed to be i.i.d. Bernoulli
random variables with probability distribution

p̃k(λ ) = Pr(θk = 1) = (1−λk)(1−α)+λk(1−β ),

where β and α are the packet dropout probabilities under
the DoS attack and in the absence of attack, respectively
(β > α).

As k grows, Ps
k exponentially converges to P, and the

Kalman filter is in steady-state. Similar to [4], assume Ps
k =

P,k≥ 0. Define h : Sn
+→ Sn

+ as h(X), AXA
′
+Q. Then the

error covariance Pk [4] corresponding to x̂k follows

Pk = θkP+(1−θk)h(Pk−1), k = 1,2, . . . ,T (1)

We write Pk(λ ) as Pk, etc., when λ is given. For a given
λ , the system metric is the average expected estimation error
called Average Error [4], JA(λ ) =

1
T ∑

T
k=1E[Pk(λ )].

An attacker aims to maximize the trace of the average
error, which leads to the following problem:

Problem 1:

max
λ∈Λ

Tr[JA(λ )]

s.t.
T

∑
k=1

λk = M,

where, Λ = {0,1}T is the set of all possible attack squences.
A squence in which M attacks are launched over the time

horizon T can be denoted by (γd ,λ k1 ,γd1 ,λ k2 , . . . ,λ ks ,γds),
which is corresponding to

(0, . . . ,0︸ ︷︷ ︸
d times

,1, . . . ,1︸ ︷︷ ︸
k1 times

,0, . . . ,0,1, . . . ,1︸ ︷︷ ︸
ks times

,0, . . . ,0︸ ︷︷ ︸
ds times

),

where ∑
s
i=1 ki =M, and d+∑

s
j=1 d j =T−M. Assume that the

data packet which contains the information of x̂s
0 successfully

arrives at the remote estimator at time k = 0, i.e., P0 = P.

23rd International Symposium on Mathematical Theory of Networks and Systems
Hong Kong University of Science and Technology, Hong Kong, July 16-20, 2018

714



Denote by pi,k the probability that Pk = hi(P), i =
0,1, . . . ,T . We have, from (1),

JA(λ ) =
1
T

T

∑
k=1

T

∑
i=0

pi,khi(P). (2)

Problem 1 is a combinational optimization problem which,
to the best of our knowledge, no unified methods or algo-
rithms can be employed to deal with. Here we exploit the
special structure of the proposed problem to solve it. From
(2), the expression of the average error is rather complicated.
However, the difference between the average errors under t-
wo similar attack squences may be more tractable. Motivated
by this, first we focus on the following three types of attack
schedules over the time horizon T . We can see that these
three types of attack squences have similar structures.

φ = (γd ,λ k1 ,γd1 ,λ k2 , . . . ,λ ks ,γds).
φ 0 = (γds ,λ ks , . . . ,λ k2 ,γd1 ,λ k1 ,γd).
φ 1 = (γd+1,λ k1 ,γd1−1,λ k2 , . . . ,λ ks ,γds).

(3)

To compare the effects under φ , φ 0 and φ 1 on Tr[JA],
we focus on the differences, i.e., JA(φ) − JA(φ

0) and
JA(φ)−JA(φ

1). More specifically, according to (2), we have
JA(φ)−JA(φ

1) = 1
T ∑

T
i=0 hi(P)Fi, where Fi = ∑

T
k=1(pi,k(φ)−

pi,k(φ
1)). Then we can respectively calculate Fi for t =

0, . . . ,T and obtain the following proposition.
Proposition 1 ([1]) : Let Ht = ∑

t
i=0 Fi, for t = 0, . . . ,T ,

where Fi = ∑
T
k=1(pi,k(φ) − pi,k(φ

1)). Then we have the
following three statements.

(1) HT = 0.
(2) Ht ≥ 0, for t = 0, . . . ,T −1, when d < ds and s = 1.
(3) Ht ≥ 0, for t = 0, . . . ,T −1, when d ≤ ds+1 and s≥ 2.
Now we can state the main results in the next section.

III. RESULTS

The following theorem is stated to present the results of
comparison among φ , φ 0 and φ 1 in (3).

Theorem 1 ([1]) : For JA in (2), and φ , φ 0, φ 1 in (3), the
following three statements hold.

(a) JA(φ) = JA(φ
0).

(b) JA(φ)≤ JA(φ
1) when d < ds and s = 1.

(c) JA(φ)≤ JA(φ
1) when d ≤ ds +1 and s≥ 2.

When the communication channel is perfect, i.e., α =
0, the optimal attack squence [4] is any schedule in the
set λ (M) = {(γd ,λ M,γd1) : d = 0,1, . . . ,T −M}. All attack
squences in the set λ (M) lead to the same average error.
This is because the assumption in [4] that α = 0, causes
Pk = P when an attack is not launched at time k. In contrast,
according to statement (b) in Theorem 1, under a lossy
network, two different attack squences in the set λ (M) may
lead to different effects on the system performance. Hence,
the proposed optimal attack squence in [4] is not the solution
to Problem 1. The following theorem is stated to present the
optimal attack schedule in this paper.

Theorem 2 ([1]) : The optimal attack squence, i.e., the
solution to Problem 1, is λ∗ = (γD1 ,λ M,γD2), where D1 +
D2 = T−M, and |D1−D2| ≤ 1, i.e., D1 =D2 or |D1−D2|=
1.

Fig. 1. Tr[JA] under different attack squences while the packet dropout
probability in the absence of attack α is varying (β = 0.7).

From Theorem 2, we see that the attacker should group
the attacks together and jam the channel in the middle of the
considered time horizon T to maximize the trace of average
expected estimation error at the remote estimator. Next we
demonstrate the theoretical results by simulations.

We consider a system with parameters A =

[
1.2 0.1
0 1

]
,

C =

[
1 0
0 1

]
, Q =

[
1 0
0 2

]
, R = 0.5C. Let T = 40, M = 18

and β = 0.7. In Fig. 1, we examine the variation of Tr[JA]
with different attack schedules under different packet dropout
probabilities without attacks from α = 0 to α = 0.7. As
shown in the figure, larger α leads to larger Tr[JA], which
makes intuitive sense. In [4], the attack schedule with k1 = 18
and d1 = 22 is also optimal. But from statement (b) of
Theorem 1, it is no longer optimal in the lossy scenario,
which can be also seen from the figure. From [4], the uniform
distribution of the attack times over the time horizon T
leads to the minimum average error. This is incorrect in
the lossy scenario. From Fig. 1, the common attack squence
with k1 = k2 = 9 and d1 = 22 leads to the smaller Tr[JA]
than the uniform one when β = 0.7 and 0.55≤ α ≤ β . The
issue of finding the worst attack squence which minimizes
the average error will be studied in the future.
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