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Abstract— Asymptotic stability is investigated for a class
of inherently nonlinear systems admitting homogeneity with
strictly decreasing degrees (HSDD). By using the technique of
homogeneous domination and the concept of HSDD, a concrete
Lyapunov/Chetaev function is constructively obtained. Then, by
Lyapunov Stability Theorem and Chetaev Instability Theorem,
a necessary and sufficient condition for the asymptotic stability
is proposed. Finally, simulations are given to validate the
theoretical result.

I. INTRODUCTION

Asymptotic stability is one of the most important issues
in nonlinear system theory, which is usually a basic require-
ment for mechanical systems in engineering practice. There
are many methods for stability analysis such as Lyapunov
first method, Lyapunov second method [1], center manifold
theorem [2], [3], small gain theorem [4] and homogenous
approximation [5]. Lyapunov first method shows that when
the linearized system of a nonlinear system has no poles at
the origin, the asymptotic stability of the nonlinear system
is exactly determined by its linearization. If the linearized
system has a pole at the origin, we usually call the nonlinear
system as an inherently nonlinear system. The asymptotic
stability problem of inherently nonlinear systems is more
challenging. Lyapunov second method is a powerful tool to
analyze asymptotic stability of inherently nonlinear systems.
But, generally speaking, it is usually difficult to design a
suitable Lyapunov function. For homogeneous systems, it
is well-known that an asymptotically stable homogeneous
system admits a homogeneous Lyapunov function. A natural
idea is to generalize the concept of homogeneity and apply
the generalized homogeneity to the stability analysis of a
class of nonlinear systems. Actually, in [6]-[10], the concept
homogeneity with monotone degrees (HMD) is proposed and
has been successfully applied to the design of stabilizing con-
trollers for inherently nonlinear systems. Note that even if a
nonlinear system admits HMD, it may be not homogeneous.
So it is interesting to analyze the asymptotic stability for an
inherently nonlinear system with HMD.

Using the idea of HMD, in our recent paper [11], we have
proved the asymptotic stability of a kind of power integral
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systems controlled by linear feedback in the form as follows:

ẋi = xpi

i+1, i = 1, 2, · · · , n−1,
ẋn = (−k1x1 − k2x2 − · · · − knxn)

pn ,
(1)

where pi’s are ratios of positive odd integers satisfying
p1 > p2 > · · · > pn ≥ 1 and the feedback gains ki’s are
positive. Actually, system (1) has the homogeneity with
strictly decreasing degrees (HSDD) [p1−1, p2−1,· · ·, pn−1]
according to the dilation weights [1, 1, · · · , 1]. Motivated by
the main result of [11], we try to consider the case of
the general dilation weights [r1, r2, · · · , rn]. How to design
stabilizing controller for a power integral chain system with-
out the monotone condition on the powers is an interesting
problem. For example, consider the nonlinear control system
as follows:

ẋ1 = x2,

ẋ2 = x
9/7
3 , (2)

ẋ3 =u.

It is easy to check that system (2) is an inherently nonlinear
system for any feedback control. Under a linear feedback
control, the monotone condition on the powers in [11] does
not hold. To solve the stabilization problem of system (2),
a natural idea is to design a feedback control law such that
the closed-loop system has a HSDD according to a general
dilation r = [r1, r2, · · · , rn] and replace the monotone con-
dition on the powers by the monotonicity of homogeneous
degrees.

Power integral systems with the form (2) are special p-
normal control systems [12], [13]. Many nonlinear control
systems can be equivalently transformed into the p-normal
form. For many p-normal control systems, stabilization prob-
lem has been widely investigated [14]-[17].

In this paper, for a class of power integral chain systems
under a kind of nonlinear feedback, a necessary and sufficient
condition for the asymptotic stability is obtained. Homogene-
ity with strictly decreasing degrees plays an important role
in the construction of the Lyapunov/Chetaev function.

II. PRELIMINARIES

This section presents some fundamental theorem and some
useful inequalities which will play important roles in obtain-
ing the main results of this paper.

Theorem 1: (Lyapunov Stability Theorem) [1], [3] Con-
sider a nonlinear system

ẋ = f(x), x ∈ �n, (3)
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where f(x) is Lipschitz continuous with respect to x, f(0) =
0. If there exists a locally positive definite function V (x)
such that

V̇ (x) :=
∂V (x)

∂x
f(x) (4)

is locally negative definite, then system (3) is asymptotically
stable.

Theorem 2: (Chetaev Instability Theorem [18]) If there
exists a continuously differentiable function V (x) such that
(i) the origin is a boundary point of the set G = {x ∈
�n | V (x) > 0}; (ii) there exists a neighborhood U of the
x = 0 such that V̇ (x) > 0 ∀ x ∈ U ∩ G, then x = 0 is an
unstable equilibrium point of the system.

Lemma 1: (Jensen’s inequality) [19] For p ≥ 1 and x i ∈
�, i = 1, · · · , n, the following holds

|x1+x2+· · ·+xn|p ≤ np−1(|x1|p+|x2|p+· · ·+|xn|p). (5)
Lemma 2: [14] For p ≥ 1 which is a ratio of positive

odd integers, the following holds

x(x+ a)p ≥ 21−pxp+1 + xap, ∀ x, a ∈ �.
Lemma 3: [6] Let c and d be positive constants. Given

any number γ > 0, the following inequality holds

|x|c|y|d ≤ c

c+ d
γ|x|c+d +

d

c+ d
γ− c

d |y|c+d, ∀ x, y ∈ �.
Definition 1: [7] A continuous vector field v : Rn →

Rn with v = [v1, · · · , vn]T is said to satisfy homogeneity
with monotone degrees (HMD), if we can find positive real
numbers (r1, · · · , rn) and real numbers τ1 ≥ τ2 ≥ · · · ≥ τn
such that

vi(ε
r1x1, · · · , εrnxn) = εri+τivi(x) (6)

for all x ∈ �n, ε > 0 and i = 1, 2, · · · , n. The constants
ri’s and τi’s are called homogeneous weights and degrees,
respectively.

III. MAIN RESULTS

Consider the nonlinear control system composed of the
chain of power integrals as follows:

ẋi = xpi

i+1, i = 1, 2, · · · , n−1,
ẋn = usn ,

(7)

where pi’s and sn are ratios of positive odd integers. Here,
we do not impose a monotonicity assumption on the powers
of (7). In order to generalize the main result of [11], we
define a special HMD:

Definition 2: A continuous vector field v : Rn → Rn

with v = [v1, · · · , vn]T is said to satisfy homogeneity with
strictly decreasing degrees (HSDD), if it has HMD defined
in Definition 1 and the homogeneous degrees satisfy

τ1 > τ2 > · · · > τn.

We design the controller u = fn(x1, · · · , xn), where fn
is defined recursively by

f1(x1) = k1x1, (8)

fi+1(x1, · · · , xi+1) = f
si/si+1

i + ki+1xi+1 (9)

for each i = 1, 2, · · · , n−1.
We are interested in the stability analysis of the closed-

loop system:

ẋi = xpi

i+1, i = 1, 2, · · · , n−1,
ẋn = −(fn(x1, x2, · · · , xn))

sn .
(10)

Assumption 1: Nonlinear system (10) admits homogene-
ity with strictly decreasing degrees τ1 > τ2 > · · · > τn with
respect to the positive dilation weights (r1, r2, · · · , rn), that
is, Eq. (6) holds for all x ∈ �n, ε > 0 and i = 1, 2, · · · , n,
which is equivalent to

ri+1pi = τi + ri, i = 1, 2, · · · , n− 1, (11)

r1s1 = r2s2 = · · · = rnsn = τn + rn. (12)

Lemma 4: Let r1, r2, · · ·, rs and n1, n2, · · ·, ns(s ≥ 2)
be any given positive constants. For any ε > 0, there exists
a positive number A such that

|x1|n1· · ·|xs|ns≤ε|x1|
n1r1+···+nsrs

r1 +A

s∑

i=2

|xi|
n1r1+···+nsrs

ri (13)

for all x1, x2, · · ·, xs ∈ �.
Proof: (Mathematical Induction) As s = 2, by Lemma 3,
we have that, for any ε > 0, there exists Ã > 0 such that

|x1|n1 |x2|n2 = (|x1|
1
r1 )r1n1(|x2|

1
r2 )r2n2

≤ ε|x1|
r1n1+r2n2

r1 +Ã|x2|
r1n1+r2n2

r2 . (14)

Suppose that Lemma 4 holds for the case of s, i.e. assume
that (13) holds. In the rest of this proof, we consider the case
of s+1. By (13), we have that

|x1|n1 · · ·|xs|ns|xs+1|ns+1

≤ (ε|x1|
n1r1+···+nsrs

r1 +A
s∑

i=2

|xi|
n1r1+···+nsrs

ri )|xs+1|ns+1 . (15)

By Lemma 3, for each i ≥ 1, there exists Bi > 0 such
that

|xi|
n1r1+···+nsrs

ri |xs+1|ns+1

≤ |xi|
n1r1+···+ns+1rs+1

ri +Bi|xs+1|
n1r1+···+ns+1rs+1

rs+1 . (16)

Applying (16) to (15) yields that there exists Â such that

|x1|n1 · · ·|xs|ns|xs+1|ns+1

≤ ε|x1|
n1r1+···+ns+1rs+1

r1 +Â

s+1∑

i=2

|xi|
n1r1+···+ns+1rs+1

ri . (17)

Proposition 1: Suppose nonlinear system (10) satisfies
Assumption 1, s1 ≥ s2 ≥ · · · > sn ≥ 1 and ki 	= 0. Then,
by a diffeomorphism transformation, (10) is equivalent to the
equations as follows:

ė1=
k1
kp1

2

(e2−e
s1
s2
1 )p1 =: g1(e1, e2),

ėi=
ki
kpi

i+1

(ei+1−e
si
si+1

i )pi+
si−1
si

e
si−1
si

−1
i−1 gi−1(e1,· · ·,ei) (18)

=:gi(e1, · · · , ei+1), i = 2, 3, · · · , n−1,
ėn=−kne

sn
n +

sn−1
sn

e
sn−1
sn

−1

n−1 gn−1(e1,· · ·,en).
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Proof: Construct a nonlinear transformation

ei = fi(x1, · · · , xi), i = 1, 2, · · · , n, (19)

where each fi is defined by (8) and (9). It is easy to check
that the inverse mapping of (19) is

x1 = k−1
1 e1, xi = k−1

i (ei − e
si−1/si
i−1 ), i = 2, · · · , n. (20)

Since s1 ≥ s2 ≥ · · · > sn ≥ 1, both the transformation (19)
and its inverse mapping (20) are smooth, which implies that
the transformation described by (19) is a diffeomorphism.
A straightforward computation shows that system (10) is
equivalently transformed into (18).

Lemma 5: Under Assumption 1, each function defined
by the right hand side of (18) satisfies

|gi(e1, · · · , ei+1)|≤Ci(
i∑

k=1

i∑

j=k

|ej |
τk+ri
rj +|ei+1|

τi+ri
ri+1 ), (21)

where each Ci is a constant dependent on gi.
Proof: (Mathematical Induction) For the case of i = 1,

from (5) it follows that

|g1(e1, e2)| ≤ C1(|e1|
s1p1
s2 + |e2|p1)

= C1(|e1|
τ1+r1

r1 + |e2|
τ1+r1

r2 ), (22)

where C1 is dependent on g1. Suppose that the lemma holds
for the case of i, i.e. (21) holds. In the following, let us
estimate |gi+1|. From (18), Lemma 1 and Assumption 1, it
follows that there exists a constant A > 0 such that

|gi+1|=
∣∣∣∣
ki+1

k
pi+1

i+2

(ei+2−e

si+1
si+2

i+1 )pi+1+
si
si+1

e
si

si+1
−1

i gi

∣∣∣∣

≤A(|ei+1|
si+1pi+1

si+2 +|ei+2|pi+1+|ei|
si

si+1
−1|gi|)

=A(|ei+1|
τi+1+ri+1

ri+1 +|ei+2|
τi+1+ri+1

ri+2 )+|ei|
ri+1
ri

−1|gi|). (23)

By the induction assumption, applying (21) to (23), we have
that

|gi+1| ≤ A(|ei+1|
τi+1+ri+1

ri+1 +|ei+2|
τi+1+ri+1

ri+2 )

+ACi

i∑

k=1

i∑

j=k

(|ej |
τk+ri
rj +|ei+1|

τi+ri
ri+1 )|ei|

ri+1
ri

−1
. (24)

Using Lemma 4 to the last term of (24), we obtain that there
exists B > 0 such that

(|ej |
τk+ri
rj +|ei+1|

τi+ri
ri+1 )|ei|

ri+1
ri

−1

≤ B(|ej|
τk+ri+1

rj +|ei|
τk+ri+1

ri +|ei+1|
τi+ri+1

ri+1 +|ei|
τi+ri+1

ri ). (25)

From (24) and (25), it follows the conclusion of the case of
i+1. So, by Mathematical Induction, the proof is complete.

Theorem 3: Suppose nonlinear system (10) satisfies As-
sumption 1, s1 ≥ s2 ≥ · · · > sn ≥ 1 and ki 	= 0. Then
system (10) is asymptotically stable if and only if ki > 0.

Proof: Construct the following Lyapunov/Chetaev func-
tion

V (e) =
n∑

i=1

li
αi

eαi

i , (26)

where

li = −kpi

i+1k
−1
i , i = 1, 2, · · · , n− 1, ln = −k−1

n (27)

and every αi > 1 is a ratio of an even integer and an odd
integer satisfying

ri
ri+1

αi≤αi+1<
ri
ri+1

αi+
τi−τi+1
ri+1

, i=1, 2, · · · , n−1. (28)

Since τi > τi+1 for all i, given α1 one can successively
determine α2, α3, · · ·, αn by (28). The derivative of (26)
along (18) can be easily computed as

V̇ =
n−1∑

i=1

eαi−1
i (e

si
si+1

i −ei+1)
pi+eαn−1+sn

n

+

n∑

i=2

lisi−1

si
eαi−1
i e

si−1
si

−1

i−1 gi−1(e1, · · · , ei). (29)

From (29), Lemma 2 and Assumption 1, it follows that

V̇(x)≥
n−1∑

i=1

21−pie
αi−1+ sipi

si+1

i −
n−1∑

i=1

|eαi−1
i epi

i+1|+eαn−1+sn
n

−
n∑

i=2

lisi−1

si
|eαi−1

i e
si−1
si

−1

i−1 gi−1(e1,· · ·,ei)|

=

n−1∑

i=1

21−pi |ei|μi+|en|μn −
n−1∑

i=1

|eαi−1
i epi

i+1|

−
n∑

i=2

lisi−1
si

|eαi−1
i e

ri
ri−1

−1

i−1 gi−1(e1, · · · , ei)|, (30)

where

μi =αi−1+
sipi
si+1

=
τi+ αiri

ri
, i = 1, 2, · · · , n−1,

and

μn =αn−1+sn =
τn+αnrn

rn
.

By (30) and Lemma 4, for any ε>0, there is Ā such that

|eαi−1
i epi

i+1| ≤ ε|ei|
αiri−ri+ri+1pi

ri +Ā|ei+1|
αiri−ri+ri+1pi

ri+1

= ε|ei|
τi+αiri

ri + Ā|ei+1|
τi+αiri

ri+1

= ε|ei|μi + Ā|ei+1|μ̂i+1 , (31)

where

μ̂i+1 =
τi+αiri
ri+1

>
τi+1 + αi+1ri+1

ri+1
= μi+1

due to τi > τi+1 and (28). Moreover, by Lemma 5, we have

|ei|αi−1|ei−1|
ri

ri−1
−1|gi−1|

≤Ci−1
i−1∑

k=1

i−1∑

j=k

|ei|αi−1|ei−1|
ri

ri−1
−1
(|ej|

τk+ri−1
rj +|ei|

τi−1+ri−1
ri ). (32)
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Now, let us estimate the terms of the right-hand side of (32).
As k= i−1, we have that j= i−1 and

|ei|αi−1|ei−1|
ri

ri−1
−1|ej|

τk+ri−1
rj

= |ei|αi−1|ei−1|
τi−1+ri

ri−1

≤ ε|ei−1|
τi−1+αiri

ri−1 + Â|ei|
τi−1+αiri

ri , (33)

where
τi−1+αiri

ri−1
≥ τi−1+αi−1ri−1

ri−1
= μi−1

and
τi−1 + αiri

ri
>

τi + αiri
ri

= μi.

As k<i−1, we have that

|ei|αi−1|ei−1|
ri

ri−1
−1|ej|

τk+ri−1
rj

≤ ε|ej|
τk+αiri

rj +A(|ei|
τk+αiri

ri + |ei−1|
τk+αiri

ri−1 ).

Considering k<i−1 and k ≤ j < i, we have

τk+αiri
rj

≥ τj+αjrj
rj

= μj ,

τk+ αiri
ri

>
τi+ αiri

ri
= μi

and
τk+ αiri

ri−1
>

τi−1 + αi−1ri−1
ri−1

= μi−1.

Moreover,

|ei|αi−1|ei−1|
ri

ri−1
−1|ei|

τi−1+ri−1
ri

= |ei|
αiri−ri+τi−1+ri−1

ri |ei−1|
ri

ri−1
−1

≤ ε|ei−1|
τi−1+αiri

ri−1 +A|ei|
τi−1+αiri

ri ,

where
τi−1+αiri

ri−1
≥ τi−1+αi−1ri−1

ri−1
= μi−1,

τi−1 + αiri
ri

>
τi + αiri

ri
= μi.

By the above discussion below (30), letting ε > 0 be
sufficiently small, we conclude that there exist constants K i

(i = 1, 2, · · · , n) such that

V̇(x) ≥
n∑

i=1

Ki|ei|μi + h(e1, e2, · · · , en),

where h(e1, e2, · · · , en) is composed of higher order terms.
Therefore, if ε is sufficiently small, there exists a domain
D ⊂ �n such that V̇ (e) is positive definite on D, that is,

V̇ (e) > 0, ∀ e ∈ D\{0}. (34)

From (27), it is easily seen that

li<0 (i =1, 2, · · ·, n) ⇔ ki>0 (i =1, 2, · · ·, n). (35)

If ki > 0 (i = 1, 2, · · · , n), it is clear that V (e) is negative
definite due to (35) and (26). This, together with (34), implies
that the zero solution of (10) is asymptotically stable by
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0.25

t

x i

x
1

x
2

x
3

Fig. 1. Time response curves as k1 = k2 = k3 = 1.

Lyapunov Stability Theorem. Therefore the positivity of k i’s
is sufficient for the asymptotic stability of (10) .

On the other hand, if there exists a ki < 0, by (35) there
exists an lj > 0. In this case, by (26) we know that the set
G := {e ∈ �n | V (e) > 0} is not empty and e = 0 is
a boundary point of G. Therefore, from (34) and Chetaev
Instability Theorem, it follows that the zero solution of (10)
is unstable. This implies that the positivity of ki’s is also
necessary for the asymptotic stability of (10)

IV. SIMULATIONS

Consider the nonlinear system as follows:

ẋ1 = x2,

ẋ2 = x
9/7
3 , (36)

ẋ3 =−((k1x
81/45
1 + k2x2)

83/81 + k3x3).

It is easy to check that the system above is in the form (10)
with the monotone homogeneous degrees

(τ1, τ2, τ3) = (
4

5
,
4

7
, 0)

relative to dilation Δr with

(r1, r2, r3) = (1,
9

5
,
83

45
).

Fig.1 shows the time response curves as k1 = k2 = k3 = 1
and Fig.2 shows the time response curves as k1= 3, k2=1
and k3=2. The simulations show that the nonlinear system
with k1 > 0, k2 > 0 and k2 > 0 is asymptotically stable.

V. CONCLUSION

For a class of power integral chain systems controlled by
a nonlinear feedback, the asymptotic stability is analyzed by
using homogeneity with strictly decreasing degrees (HSDD),
technique of homogeneous domination, Lyapunov Stability
Theorem and Chetaev Instability Theorem. In the future
work, we will investigate the general nonlinear systems
admitting HSDD.
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Fig. 2. Time response curves as k1=3, k2=1 and k3=2.
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