
Finite-Time Consensus Control for Second-order Multi-Agent Systems Based
on Position Information

Zhenxing Li1,2, Zhaodong Liu2 and Guochen Pang2

Abstract— In this paper, we consider the distributed finite-
time consensus control for a class of second-order nonlinear
multi-agent systems. In order to design the finite-time con-
sensus controller, homogeneous function was employed and a
new type of distributed finite-time consensus controller was
given. This kind of controller not only solves the finite-time
consensus problem of leaderless second-order nonlinear multi-
agent systems, but also relaxes the condition of the network
topology among the agents from undirected graph or detail-
balanced directed graph to strongly connected graph. In the
real control engineering, the most common sensors are dis-
placement sensor and acceleration sensor, the velocity infor-
mation is not available directly. When velocity information is
not available, the finite-time convergent observer is designed
by using position information, and we give another kind of
finite-time consensus controller for multi-agent systems based
on the states of the finite-time observers.

I. INTRODUCTION
During the past decade, the distributed control of

multi-agent systems has gained increasing attention in
the system and control community for the broad range
of applications. A typical control task of multi-agent
systems is consensus, which is achieved by sharing
information among the neighbourhood. When the states
or outputs of all agents converge to a common value, we
say that the consensus task of the multi-agent systems
is achieved. A notable feature of consensus control is
that the distributed controller only uses the local relative
information rather than the full state information of
multi-agent systems. Many effective coordination designs
have been developed; see [1]-[3] and references therein.

Most of the existing coordination designs of multi-
agent systems are asymptotical ones, which means that
the multi-agent systems achieve control tasks in infinite
settling time. However, under some practical situations,
convergence rate of coordination protocols is an im-
portant issue. The finite-time consensus problems of
first-order multi-agent systems were studied in [4]-[6].
The finite-time consensus, tracking and containment
problems for second-order multi-agent systems were
investigated in [7]-[11]. The literatures mentioned above
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only consider the first-order (or second-order) linear (or
nonlinear) multi-agent systems. The studies of more
general cases are seldom considered [12]-[13].

Most papers, mentioned above, are dealing with the
distributed finite-time tracking control for leader-follower
multi-agent systems with undirected network and the
studies of finite-time consensus control for second-
order nonlinear leaderless multi-agent systems are not
reported. In this paper, we focus on the finite-time
consensus control problems of a class of second-order
nonlinear leaderless multi-agent systems with directed
topology. Hence, we aim to solve the finite-time con-
sensus problems for second-order nonlinear multi-agent
systems by using the homogeneous system theory. When
the velocity information is not available, we construct a
finite-time convergent observer for each agent. Then, we
use observers’ states to design the finite-time consensus
controller. We prove that the finite-time consensus prob-
lems of second-order nonlinear multi-agent systems can
be solved by the proposed protocols.

II. Problem statement and preliminaries
The following notations will be used in the rest of this

technical note. Let Qodd
>0 be the set of all positive rational

numbers with odd numerator and odd denominator,
Qeven
>0 be the set of all positive rational numbers with

even numerator and odd denominator.
A. Problem statement

In this paper, we consider a multi-agent system con-
sisting of N agents. The dynamics of the ith (i = 1, . . . ,N)
agent is described by{

ṗi = vi,

v̇i = ui + f (pi,vi),
(1)

where pi,vi ∈ R are the position and velocity of the ith
agent and ui is the input of the ith agent, f (·) is a
nonlinear continuous function.

The concerned finite-time consensus for leaderless
multi-agent system (1) is given as:

Definition 1: The multi-agent system (1) is said to
reach finite-time consensus, if for any initial condition,
there exists a finite settling time T such that ∀ i, j =
1, . . . ,N,

lim
t→T

(pi(t)− p j(t)) = 0, lim
t→T

(vi(t)− v j(t)) = 0,

and for all t ≥ T

pi(t) = p j(t), vi(t) = v j(t).

23rd International Symposium on Mathematical Theory of Networks and Systems
Hong Kong University of Science and Technology, Hong Kong, July 16-20, 2018

809



To facilitate the stability analysis of the closed-loop
system, we make the following assumption on f (·).

Assumption 1: It is assumed that, for any
pi,vi, p j,v j ∈ R, there exist θ > 0 and −τ ∈ (0,1/2)∩Qeven

>0
such that f (·) satisfies the following inequality:

| f (pi,vi)− f (p j,v j)| ≤ θ(|pi − p j|r3/r1 + |vi − v j|r3/r2),

where r1 = 1, r2 = 1+ τ and r3 = 1+2τ.

B. Graph Theory
Throughout this technical note, we use a directed

graph G = (V ,E ,A) to describe the information ex-
changed among agents, where V = {1,2, . . . ,N} is the set
of agents, E ⊆ V ×V is the set of edges and A = [ai j] ∈
RN×N is the associated adjacency matrix with weighing
factors ai j ≥ 0. (i, j) denotes a directed edge from agent
j to agent i. If (i, j) ∈ E , ai j > 0 and ai j = 0 otherwise. A
path from i1 to il is a sequence of ordered edges of the
form (ik+1, ik) ∈ E , k = 1, . . . , l−1. A directed graph G is
said to be strongly connected if there exists a directed
path from every agent to every other agent.

III. Finite-time consensus control design

In this section, we consider the finite-time consensus
problem of second-order nonlinear multi-agent system
(1).

Denote pa = ∑N
i=1 γi pi, va = ∑N

i=1 γivi. Let p̄i = pi −
pa, v̄i = vi − va be the position error and velocity error
of the ith agent. Then, the error dynamics is given as
follows: {

˙̄pi = v̄i,

˙̄vi = ūi + f̄i(p,v), i = 1 . . . ,N,
(2)

where f̄i(p,v) = f (pi,vi) − ∑N
j=1 γ j f (p j,v j), ūi = ui −

∑N
j=1 γ ju j. If the system (2) is finite-time stable at the

equilibrium by a suitable feedback control, then the
finite-time consensus problem of multi-agent system (1)
is solved. Hence, we study the finite-time stabilization of
system (2) rather than the finite-time consensus problem
of multi-agent system (1). For convenience, we set

p̃i =
N

∑
j=1

ai j(pi − p j) =
N

∑
j=1

ai j(p̄i − p̄ j),

ṽi =
N

∑
j=1

ai j(vi − v j) =
N

∑
j=1

ai j(v̄i − v̄ j)

(3)

as the cooperative errors, which will be used to construct
the control input ui.

For the convenience of design of controller and finite-
time analysis, we introduce the following coordination
transformation

xi = pi/κ, yi = vi/κ,
x̄i = p̄i/κ, ȳi = v̄i/κ,
x̃i = p̃i/κ, ỹi = ṽi/κ, i = 1, . . . ,N,

(4)

where κ > 0 is a constant to be determined later.
Substituting new variables into multi-agent system (2)
yields the following system{

˙̃xi = ỹi

˙̃yi = ũi/κ + f̃i(p,v)/κ, i = 1, . . . ,N.
(5)

Let β0,β1 ∈ Qodd
>0 be the constants satisfying the fol-

lowing inequalities:

β0 = r2, (β1 +1)r2 ≥ (β0 +1)r1 > 0. (6)

It is easy to verify that β1 > 1.
Theorem 1: For the second-order nonlinear multi-

agent system (1), suppose the directed graph G is
strongly connected and Assumption 1 holds, there exists
constants κ > 0, h1 > 0 and h2 > 0 such that

ui =−κh2[ỹ
β1
i +(h1x̃r2

i )β1 ]r3/(β1r2) (7)

solves the finite-time consensus problem of multi-agent
system (1).

Proof: Consider the following Lyapunov function
candidate

V =V1 +
N

∑
i=1

γiVi,2, (8)

where V1 = 2x̃T Γx̃r2 , Vi,2 =
∫ ỹi

ui,1
[sβ1 − uβ1

i,1]ds with ui,1 =

−h1x̃r2
i and h1 =

1
1+r2

.
The time derivative of V along the trajectory of (??)

and (7) is given by

V̇ =V ′++
N

∑
i=1

γi
∂Vi,2

∂ ỹi

f̃i(p,v)
κ

, (9)

where V ′(x̃, ỹ) = 1
h1
(x̃T )r2Γỹ+∑N

i=1 γi
∂Vi,2
∂ x̃i

ỹi +∑N
i=1 γi

∂Vi,2
∂ ỹi

ũ′i
with ũ′i = ũi/κ. Next, we will use two steps to complete
the proof.

Step 1: We consider the first term of V ′

1
h1

(x̃T )r2Γỹ

=− (x̃T )r2 ΓLx̃r2 +
N

∑
i=1

∂V1

∂ x̃i
(ỹi −ui,1)

=− (x̃T )r2
(ΓL+LT Γ)

2
x̃r2 +

N

∑
i=1

∂V1

∂ x̃i
(ỹi −ui,1).

(10)

By simple calculation, we obtain that ∑N
i=1 γi

∂Vi,2
∂ ỹi

ũ′i is
nonpositive and negative when ỹi ̸= ui,1. In the rest of
Step 1, we will show that V ′ is negative definite by
choosing a suitable h2 under the following two cases.

Case 1: ∑N
i=1 γi

∂Vi,2
∂ ỹi

ũ′i = 0.
In this case, ỹi = ui,1,Vi,2 = 0, ∂Vi,2

∂ x̃i
= 0, and we have Vi,2 =

0 for i, j = 1,2, . . . ,N. Hence, for x̃ ̸= 0, ỹ ̸= 0, we have
V ′ =−(x̃T )r2(ΓL+LT Γ)x̃r2 < 0.

Case 2: ∑N
i=1 γi

∂Vi,2
∂ ỹi

ũ′i < 0.
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Define
S+ = {[x̃T , ỹT ]T ∈ R2N : V ′

0 ≥ 0},
S− = {[x̃T , ỹT ]T ∈ R2N : V ′

0 < 0},
S0 = {[x̃T , ỹT ]T ∈ R2N : Γ(x̃, ỹ) = 1},

(11)

where
V ′

0 =
2
h1

(x̃T )r2ΓLỹ+
N

∑
i=1

γi
∂Vi,2

∂ x̃i
ỹi,

Γ(x̃, ỹ) =

(
N

∑
i=1

x̃c/r1
i +

N

∑
i=1

ỹc/r2
i

)1/c (12)

with c > 1. We suppose S+ is nonempty. Set

M1
def
= max

[x̃T ,ỹT ]T∈S0

V ′
0, M2

def
= min

[x̃,ỹ]T∈S0∩S+
−

N

∑
i=1

γi
∂Vi,2

∂ ỹi

ũ′i
h2

.

From equation (7), we learn that ũ′i/h2 does not depend
on h2. Take h2 > M1/M2, then V ′ < 0 for all [x̃T , ỹT ]T ∈ S0.

For ε = Γ(x̃, ỹ)> 0, let ε = Γ(x̄, ȳ)> 0 and

[x̌T , y̌T ]T = (x̃1/ε, . . . , x̃N/ε, ỹ1/εr2 , . . . , ỹN/εr2)T ∈ S0.

Because of homogeneity of V ′(x̃, ỹ), for any [x̃T , ỹT ]T ̸= 0,
we get

V ′(x̃, ỹ) = ε(β1+1)r2+τV ′(x̌, y̌)< 0,

and we have

V ′(x̃, ỹ)≤ K1V (x̃, ỹ)
(β1+1)r2+τ
(β1+1)r2 , (13)

where K1 = max
{[x̃T ,ỹT ]T :V (x̃,ỹ)=1}

V ′(x̃, ỹ)< 0.

Step 2: Now, we consider ∑N
i=1 γi

∂Vi,2
∂ ỹi

f̃i(p,v)
κ . Under

Assumption 1, we can prove that

V̇ (x̃, ỹ)≤V ′(x̃, ỹ)−θρσκτ K2V ′(x̃, ỹ). (14)

where ρ > 0,σ > 0 and K2 > 0 are known constants.
Choosing a large enough κ satisfying 1−θρσκτ K2 > 0,
the right side of inequality (14) is negative definite. In a
similar manner as inequality (13), the above inequality
can be rewritten as

V̇ ≤ (1−θκτ K2)K1V
(β1+1)r2+τ
(β1+1)r2 (15)

which implies that the finite-time consensus problem of
multi-agent system (1) is solved.

IV. Finite-time consensus controller based on position
information

In this section, we consider the finite-time consensus
problem of leaderless multi-agent systems (1) when the
velocity information is not available. For each agent,
a finite-time observer is constructed to estimate the
unknown states. Then, we use the estimated states to
design the distributed finite-time consensus controller ui.

The finite-time observer for agent i is designed as [14]?{
˙̂pi = v̂i + k1H(pi − p̂i)

r2 ,

˙̂vi = ui + f (pi, v̂i)+ k2H2(pi − p̂i)
r3 , i = 1, . . . ,N,

(16)

where k1, k2 and H > 1 are constants. Denote

x̂i =
N

∑
j=1

ai j
p̂i − p̂ j

κ
, ŷi =

N

∑
j=1

ai j
v̂i − v̂ j

κ
,

x̂ = [x̂1, . . . , x̂N ]
T , ŷ = [ŷ1, . . . , ŷN ]

T ,

where κ is the constant determined in Theorem 1. We
give the distributed finite-time consensus controller as
follows:

ui(x̂, ŷ) =−κh2[ŷ
β1
i +(h1x̂r2

i )β1 ]r3/(β1r2). (17)

Theorem 2: For multi-agent system (1), suppose the
directed graph G is strongly connected and Assumption 1
holds, then distributed controller (17) based on observers
(16) solves the finite-time consensus problem of multi-
agent system (1).

Proof: Denote ei,p = pi − p̂i,ei,v = vi − v̂i, i = 1, . . . ,N,
as the observer errors. Set ep = [e1,p, . . . ,eN,p]

T , ev =
[e1,v, . . . ,eN,v], e = [eT

p ,e
T
v ]

T . We can get the following
system

ėi.p = Hei,v − k1H(ei,p)
r2 ,

ėi,v =−k2H2(ei,p)
r3 +

f (pi,vi)− f (pi, v̂i)

H
.

(18)

By [14], there exist k1, k2 and H ≥ 1 such that the
error system (18) is globe finite-time stable. And there
exist a Lyapunov function Wi(ei) and a positive function
Ψi(ei) for system (18) satisfying Ẇi(ei)≤−Ψi(ei). For the
augmented system (5) and (18), we choose the following
Lyapunov function

V (x̃, ỹ,e) =V 2(x̃, ỹ)+K
N

∑
i=1

W α
i (ei), (19)

where α = (β1 + 1)r2 > 1, K > 0 is large number to be
determined. Take the derivative of V (x̃, ỹ,e) along (5) and
(18), we get

V̇ (x̃, ỹ,e)≤−B1(x̃, ỹ)−KB2(e)−B3(x̃, ỹ,e), (20)

where

B1(x̃, ỹ) =−2K1V
2α−τ

α (x̃, ỹ),

B2(e) =
N

∑
i=1

αW α−1
i (ei)·Ψi(ei),

B3(x̃, ỹ,e) =
N

∑
i=1

2V (x̃, ỹ)· ∂V (x̃, ỹ)
∂ ỹi

[ũi(x̃, ỹ)− ũi(x̂, ŷ,e)].

Like the proof of Theorem 1, we can prove that

V̇ (x̃, ỹ,e)≤CV
2α+τ

2α (x̃, ỹ,e), (21)

where C =− min
{(x̃T ,ỹT ,e):V (x̃,ỹ,e)=1}

B(x̃, ỹ,e)< 0.
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Fig. 1. Trajectories of multi-agent system (22) with controller (7)

V. Simulations
In this section, we use an example to illustrate the

proposed finite-time consensus and protocol (7). We
consider a multi-agent system with four agents labeled
as 1, 2, 3, 4. The dynamics of ith agent is described by{

ṗi = vi,

v̇i = ui − sin(pi)− v1/3
i , i = 1, . . . ,4.

(22)

It is easy to verify that f (pi,vi) =−sin(pi)−v1/3
i satisfies

Assumption 1 with θ = 2 and τ = − 2
5 . The Laplacian

matrix of graph G is given as follows:

L =


1 −1 0 0
0 1 −1 0
−1 0 2 −1
−1 0 0 1

 .
We design the consensus controller (7) for agents 1, 2,

3, 4 to reach finite-time consensus. According to Theorem
1, we set r1 = 1,r2 =

3
5 ,β0 =

3
5 ,β1 = 2 and κ = 5. Under

controller (7), the response curves of agents are given in
Fig. 1.

When the velocity information is not available, we use
the following finite-time observer to estimate the state
of agent i:{

˙̂pi = v̂i + k1H(pi − p̂i)
r2 ,

˙̂vi = ui + sin(pi)− v̂1/3
i + k2H2(pi − p̂i)

r3 ,
(23)

where k1 = 4, k2 = 1, H = 2, r3 = 1/5, p̂i(0)= 0 and v̂i(0)=
0. Then, we design finite-time consensus controller (17),
and the associated response curves of agents are given
in Fig. 2.

VI. Conclusions
This paper has studied the finite-time consensus prob-

lems of second-order nonlinear leaderless multi-agent
systems with directed topology. Based on the theories
of finite-time control and homogeneous systems, we give
two kinds of finite-time consensus protocols. We prove
that the finite-time control objectives can be achieved
by the proposed protocols. Finally, a simulation is given
to illustrate the effectiveness of the proposed protocol.
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Fig. 2. Trajectories of multi-agent system (22) with controller (17)
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