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Abstract— Given a finite sequence of scalars, the Berlekamp-
Massey algorithm solves the problem of finding a linear
feedback shift register of minimal length which generates it.
When instead of a sequence of scalars, we are given a sequence
of matrices, it can be interpreted as the problem of finding a
minimal partial realization and also as the problem of finding
a minimal length right (left) matrix generator of the sequence.
We generalize the main result on which the Berlekamp-Massey
algorithm is based in terms of the partial Brunovsky indices
of a finite sequence of matrices and design a strategy to obtain
them for sequences of vectors. Once they are known, we can
compute a minimal partial realization and a minimal length
right (left) matrix generator of the sequence.

I. INTRODUCTION

A linear feedback shift register (LFSR) of length L with
connection polynomial C(D) = 1 + c1D + c2D

2 + · · · +
cLD

L and initial state (y0, . . . , yL−1) generates a sequence
of scalars YN = (y0, y1, . . . , yN−1), yi ∈ F, F a field,
according to the recursion

yj =

L∑
i=1

ciyj−i, L ≤ j ≤ N − 1.

The Berlekamp-Massey algorithm ( [11]) solves the problem
of finding the shortest LFSR which generates a given finite
sequence of scalars. The result is based on an iterative
algorithm for decoding BCH codes introduced in [5]. The
extension of this problem to sequences of matrices has been
analyzed from different points of view ( [1], [2], [7]–[10],
[12] among others).

We generalize this problem to the matrix case in different
ways. Observe that if YN = (y0, y1, . . . , yN−1) is generated
by a LFSR with connection polynomial C(D) = 1+ c1D+
c2D

2 + · · ·+ cLD
L and

A =


0 0 0 . . . 0 cL
1 0 0 . . . 0 cL−1

0 1 0 . . . 0 cL−2

...
...

...
. . .

...
...

0 0 0 . . . 1 c1

 , B =


1
0
...
0

 ,

C =
[
y0 y1 . . . yL−2 yL−1

]
,

then
CAjB = yj , L ≤ j ≤ N − 1.
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It means that (A,B,C) is a partial realization of YN in
reduced controllability form.

Then, in the matrix case, a natural generalization of the
problem solved by the Berlekamp-Massey algorithm is:

Given a finite sequence of matrices YN =
(Y0, Y1, . . . , YN−1), Yj ∈ Fp×m, find a minimal partial
realization of YN , i.e. find a matrix triple (A,B,C),
A ∈ Fd×d, B ∈ Fd×m, C ∈ Fp×d of least possible order d
such that

Yj = CAjB, 0 ≤ j ≤ N − 1.

A LFSR can also be considered as a right (left) matrix
generator. We say that CR(D) = Im+R1D+ · · ·+RρDρ ∈
F[D]m×m is a right matrix generator of length ρ of YN if

Yj = Yj−1R1 + · · ·+ Yj−ρRρ, ρ ≤ j ≤ N − 1.

Analogously, CL(D) = Im+L1D+ · · ·+LρDρ ∈ F[D]p×p

is a left matrix generator of YN if

Yj = L1Yj−1 + · · ·+ LρYj−ρ, ρ ≤ j ≤ N − 1.

We pose the following problem:
Given a finite sequence of matrices YN =

(Y0, . . . , YN−1), Yj ∈ Fp×m, find a right (left) matrix
generator of YN of minimal length.

When m = 1 (p = 1) the problem of finding a right
(left) matrix generator of YN is equivalent to that of finding
a partial realization of YN , and when m = p = 1 both
problems are equivalent to that of finding a LFSR which
generates YN . In the general case, given a right (left) matrix
generator of length δ of YN we can easily obtain a partial
realization of it of order mδ (pδ). Hence, if d and g are,
respectively, the order of a minimal partial realization and the
minimal length of a right (left) matrix generator of YN , then
d ≤ mg (d ≤ pg). On the other hand, knowing a minimal
partial realization of YN , with additional calculations, we
can obtain a minimal length right (left) matrix generator (a
procedure is described in [4]).

In Section II we present the theorem by Massey ( [11])
standing the Berlekamp-Massey algorithm, we introduce the
partial Brunovsky indices of a sequence and some previous
results about partial realizations. In Section III we state
the main result, which relates the order of minimal partial
realizations and the minimal length of right (left) matrix
generators of YN+1 with those of YN , and sketch the steps to
be followed to obtain them for sequences of vectors (m = 1
or p = 1). We also (briefly) indicate how to obtain minimal
partial realizations of YN in reduced controllability and
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observability forms. In Section IV we present an example
of how to obtain the partial Brunovsky indices of a given
finite sequence of vectors, a minimal partial realization and
a minimal length right and left matrix generator of it. Finally,
in Section V we summarize the achievements of the paper.

II. PREVIOUS RESULTS

The Berlekamp-Massey algorithm is an iterative adaptive
procedure which is based on the result of the next theorem
( [11, Theorem 2]), where given Y = (y0, y1, . . .), Li
denotes the length of the shortest register generating Yi =
(y0, y1, . . . , yi−1), for i ≥ 1 .

Theorem 2.1: 1) If some LFSR of length LN generates
the sequences YN and YN+1, then LN+1 = LN .

2) If some LFSR of length LN generates the sequence
YN but not the sequence YN+1, then

LN+1 = max{LN , N + 1− LN}.
Our aim is to generalize this result.

Given a sequence of matrices YN = (Y0, Y1, . . . , YN−1),
the order of the minimal partial realizations of YN can be
stated in terms of the partial Kronecker row indices or the
partial Kronecker column indices of YN (see [6, Theorem
2.1]). Moreover, if αN and βN are the largest partial Kro-
necker row and column indices of YN , respectively, we
will see that the minimal length of the right (left) matrix
generators of YN is βN (αN ).

Given a partition a = (a1, a2, . . . , am) of nonnegative in-
tegers, the conjugate partition of a, a = (a1, a2, . . . , aN ), is
defined as ak := #{i : ai ≥ k}, 1 ≤ k ≤ N . The conjugate
partitions of the partial Kronecker row and column indices of
YN are called the partial Brunovsky row and column indices
of YN , respectively ( [3]). In what follows, results are stated
in terms of the partial Brunovsky indices. They are sequences
of integers s1 ≥ s2 ≥ · · · ≥ sαN

> 0 = sαN+1 = · · · = sN
and r1 ≥ r2 ≥ · · · ≥ rβN

> 0 = rβN+1 = · · · = rN , which
can be defined as

si = rankHi,N+1−i(YN )− rankHi−1,N+1−i(YN ),

ri = rankHN+1−i,i(YN )− rankHN+1−i,i−1(YN ),

where Hi,j(YN ) is the Hankel matrix

Hi,j(YN ) =


Y0 Y1 . . . Yj−2 Yj−1

Y1 Y2 . . . Yj−1 Yj

... . .
.

. .
.

. .
. ...

Yi−2 Yi−1 . . . Yi+j−2 Yi+j−1

Yi−1 Yi . . . Yi+j−3 Yi+j−2

 ,

for 1 ≤ i ≤ N, 1 ≤ j ≤ N + 1 − i (we take
rankH0,N (YN ) = rankHN,0(YN ) = 0).

The order of minimal partial realizations of YN is given
in the next proposition ( [6, Theorem 2.1]).

Proposition 2.2: The order dN of minimal partial realiza-
tions of YN is

dN =

βN∑
i=1

ri =

αN∑
i=1

si.

The following proposition is straightforward.

Proposition 2.3: There exists a right matrix generator
CR(D) ∈ F[D]m×m of length ρ of YN if and only if

rankHN−ρ,ρ+1(YN ) = rankHN−ρ,ρ(YN ),

i.e., if and only if rρ+1 = 0.

Consequently,

Proposition 2.4: The minimal length of the right matrix
generators of YN is the largest partial Kronecker column
index of YN .

Analogously, the minimal length of the left matrix gener-
ators of YN is largest partial Kronecker row index of YN .

Using the properties of the Hankel matrices, we are able
to relate the partial Brunovsky indices of YN+1 with those
of YN , which allow us to generalize Theorem 2.1. The result
is presented in Section III. From it, we can obtain iteratively
the partial Brunovsky indices of a given sequence of vectors,
and then a minimal realization and a minimal length matrix
generator of the sequence. We will sketch an example in
Section IV.

III. MAIN RESULT

In this section we state a generalization of Theorem 2.1
(see [4]). Given Y = (Y0, Y1, . . .), Yj ∈ Fp×m, for i ≥ 1,
di denotes the order of the minimal partial realizations of
Yi = (Y0, Y1, . . . , Yi−1), and αi, βi the number of positive
Brunovsky row and column indices of Yi, respectively
(equivalently, the minimal length of the left and right matrix
generators of Yi, respectively).

Theorem 3.1: Let (A,B,C) be a minimal partial realiza-
tion of YN .

1) If CANB = YN (i. e., (A,B,C) is a realization of
YN+1), then

αN+1 = αN , βN+1 = βN , dN+1 = dN .

2) If CANB 6= YN (i. e., (A,B,C) is not a realization
of YN+1), then

αN+1 ≥ max{αN , N + 1− βN},

βN+1 ≥ max{βN , N + 1− αN},

dN+1 ≥ dN .

Moreover, if m = 1 then

αN+1 = max{αN , N + 1− βN},

and if p = 1, then

βN+1 = max{βN , N + 1− αN}.

As a consequence, as announced, we can iteratively com-
pute βN , αN and the set of partial Brunovsky indices of YN ,
N ≥ 1, for sequences of vectors (m = 1 or p = 1).

We sketch the steps to be followed when m = 1 (for
details see [4]).
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Assume that Y = (Y0, Y1, . . . , ), Yi ∈ Fp×1, then, for i ≥
1, βi = di. The partial row Brunovsky indices (si1, . . . , s

i
i)

of Yi satisfy

sij ≥ si−1j , i ≥ 1, 1 ≤ j ≤ i (si−1i = 0).

Observe that if βN = βN−1, then αN = αN−1. And, if
βN > βN−1, then it can be seen that

sNi =

{
sN−1i + 1, N + 1− βN ≤ i ≤ N − βN−1,
sN−1i , 1 ≤ i ≤ N − βN , N − βN−1 + 1 ≤ i ≤ N.

Hence, if for some i ∈ {1, . . . N − 1}, sN−1i−1 = sN−1i , then
βN 6= N + 1− i.

When N = 0, take β = 0, α = 0, s = (0).
At step i = N , we first find the set I = {i : 1 ≤ i ≤

min{N − β, α + 1}, si−1 6= si}, where s0 = p. Then,
for j ∈ I we successively compute ρ =

∑j
k=1 sk and t =

rankHj,N+1−j(YN ) until t > ρ.
If t = ρ for all j ∈ I, then β = β, α = α, s = s.
If for some j ∈ I we have t > ρ, then α = max{N −

β, α}, si = si + 1 for j ≤ i ≤ N − β, β = N + 1− j, and
we obtain the set of indices R = {i : si−1 = si}.

Once the partial Brunovsky indices are known, we can
obtain minimal partial realizations of YN in controllabil-
ity and observability reduced forms (see [4] for details):
As rβN+1 = 0, we have that rankHN−βN ,βN+1(YN ) =
rankHN−βN ,βN

(YN ), which means that the last column of
HN−βN ,βN+1(YN ) is a linear combination of the columns of
HN−βN ,βN

(YN ). The coefficients of the linear combination
will be the parameters appearing in the controlability reduced
form (see Example in the next Section).

Similarly, for each 1 ≤ i ≤ αN + 1, in the last block
row of Hi,N+1−i(YN ) there are si−1 − si rows which
depend linearly on the rest of rows of Hi,N+1−i(YN ). The
coefficients of the linear combinations will be the parameters
appearing in the observability reduced form (see Example in
the next Section).

IV. EXAMPLE

Let F = R, p = 4,

Y21 = (e3, e3, 0, e4, e1 + e4, 0, e2 + e3, e2, e1, e3, 0,
0, 0, 0, 0, e4, 0, 0, e1, 0, 0),

where, for i = 1, . . . , 4, ei are the unit vectors in R4.

For this example, some of the intermediate results of the
whole calculation appear in the next table:

N β α s
0 β0 = 0, α0 = 0, s0 = (0)
1 β1 = 1, α1 = 1, s1 = (1)
2 β2 = 1, α2 = 1, s2 = (1)
8 β8 = 7, α8 = 2, s8 = (4, 3)
9 β9 = 8, α9 = 2, s9 = (4, 4)
10 β10 = 8, α10 = 2, s10 = (4, 4)
16 β16 = 13, α16 = 6, s16 = (4, 4, 2, 1, 1, 1)
17 β17 = 15, α17 = 6, s17 = (4, 4, 3, 2, 1, 1)
20 β20 = 16, α20 = 6, s20 = (4, 4, 3, 3, 1, 1)
21 β21 = 17, α21 = 6, s21 = (4, 4, 3, 3, 2, 1)

We explain next the calculations performed in some steps:

• At N = 1 (in step 0 we have β = β0 = 0, α = α0 = 0,
s = s0 = (0), R = ∅),
I = {i : 1 ≤ i ≤ min{N − β, α+ 1}} \ R
= {i : 1 ≤ i ≤ min{1, 1}} \ ∅ = {1}.

For j = 1, ρ = s1 = 0, t = rankH1,1(Y1) =
rank

[
e3
]
> ρ. Then α = max{N − β, α} = max{1−

0, 0} = 1, si = si + 1 for 1 ≤ i ≤ N − β = 1, i.e.
s = (1), β = N + j − 1 = 1 + 1− 1 = 1, and R = ∅.

• At N = 2 (in step 1, β = β1 = 1, α = α1 = 1,
s = s1 = (1), R = ∅),

I = {i : 1 ≤ i ≤ 1} \ ∅ = {1}.

For j = 1, ρ = s1 = 1, t = rankH1,2(Y2) = ρ.
Then, β = 1, α = 1, s = (1), R = ∅.

• At N = 9 (in step 8, β = β8 = 7, α = α8 = 2,
s = s8 = (4, 3), R = {1}),

I = {i : 1 ≤ i ≤ 2} \ {1} = {2}.

For j = 2, ρ = s1 + s2 = 7, t = rankH2,8(Y9) =
8 > ρ. Then α = max{9 − 7, 2} = 2, si = si + 1 for
2 ≤ i ≤ 2, i.e. s = (4, 4), β = 8, and R = {1, 2}.

• At N = 10 (in step 9, β = β9 = 8, α = α9 = 2,
s = s9 = (4, 4), R = {1, 2}),

I = {i : 1 ≤ i ≤ 2} \ {1, 2} = ∅.

Then, β = 8, α = 2, s = (4, 4), R = {1, 2}.
• At N = 17 (in step 16, β = β16 = 13, α = α16 = 6,
s = s16 = (4, 4, 2, 1, 1, 1), R = {1, 2, 5, 6}),

I = {i : 1 ≤ i ≤ 4} \ {1, 2, 5, 6} = {3, 4}.

For j = 3, ρ = s1 + s2 + s3 = 10, t =
rankH3,15(Y17) = 11 > ρ.
Then α = max{17−13, 6} = 6, si = si+1 for 3 ≤ i ≤
4, i.e. s = (4, 4, 3, 2, 1, 1), β = 15, and R = {1, 2, 6}.

• At N = 21 (in step 20, β = β20 = 16, α = α20 = 6,
s = s20 = (4, 4, 3, 3, 1, 1), R = {1, 2, 4, 6}),

I = {i : 1 ≤ i ≤ 5} \ {1, 2, 4, 6} = {3, 5}.

For j = 3, ρ = s1 + s2 + s3 = 11, t =
rankH3,19(Y21) = 11 = ρ.
For j = 5, ρ = s1 + · · · + s5 = 15, t =
rankH5,17(Y21) = 16 > ρ.
Then α = max{21−16, 6} = 6, si = si+1 for 5 ≤ i ≤
5, i.e. s = (4, 4, 3, 3, 2, 1), β = 17, and R = {1, 2, 4}.

As an example, we obtain a minimal partial realization and
a right and a left matrix generators of Y8 (β8 = 7, α8 = 2,
s8 = (4, 3)).

As β8 = 7, we know that rankH1,8(Y8) =
rankH1,7(Y8), which means that Y7 = e2 is a linear
combination of the columns of H1,7(Y8). Solving the system

H1,7(Y8)

b7...
b1

 = e2,
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the solution depends on 3 free parameters a, b, c ∈ R:

b7 = a, b6 = −1− a, b5 = b, b4 = b3 = 0, b2 = c, b1 = 1.

Then, all the minimal partial realizations of Y8 in reduced
controllability form are

Ac =



0 0 0 0 0 0 a
1 0 0 0 0 0 −1− a
0 1 0 0 0 0 b
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 c
0 0 0 0 0 1 1


, Bc =



1
0
0
0
0
0
0


,

Cc =
[
e3 e3 0 e4 e1 + e4 0 e2 + e3

]
,

with a, b, c ∈ R. Equivalently, all the rigth matrix generators
of minimal length of Y8 are

CR(D) = 1+D+cD2+bD5+(−1−a)D6+aD7, a, b, c ∈ R.
To find the minimal partial realizations in reduced

observability form, we proceed analogously by
rows. If Ĥ2(Y8) = H2(Y8)({1, 2, 3, 4, 6, 7, 8}, :) and
Ĥ3(Y8) = H3(Y8)({1, 2, 3, 4, 6, 7, 8}, :), then

H2(Y8)(5, :) =
[
−1 0 0 1 0 0 0

]
Ĥ2(Y8),

H3(Y8
)({10, 11, 12}, :) =

1 a 0 0 1 0 0
1 b 0 0 0 0 0
1 c 1 −1 1 −1 1

 Ĥ3(Y8
),

with a, b, c ∈ R. Then, all the minimal partial realizations
of Y8 in reduced observability form are:

Ao =



−1 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
1 a 0 0 1 0 0
1 b 0 0 0 0 0
1 c 1 −1 1 −1 1


, Bo =



0
0
1
0
0
1
0


, a, b, c ∈ R

C0 =

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

 .

We know that the minimal length of a left matrix generator
of Y8 is α8 = 2. And, from the dependence relations of some
of the rows of the observability matrix of (Ao, Bo, Co) it can
be seen that (see [4]), if

[
L2 L1

]
=

 0 0 0 0 −1 0 0 1
1 a 0 0 0 1 0 0
1 b 0 0 0 0 0 0
1 c 1 −1 0 1 −1 1

 ,

then

[Y2 Y3 . . . Y7] = [L2 L1]
[
Y0 Y1 . . . Y5

Y1 Y2 . . . Y6

]
. (1)

Hence, a left matrix generator of minimal length of Y8 is

CL(D) = I4 + L1D + L2D
2.

In fact, solving the system (1) we obtain that all the left
matrix generators of minimal length of Y8 are CL(D) =
I4 + L1D + L2D

2 with

[
L2 L1

]
=

 a1 b1 0 −a1 a1 − 1 0 0 1
a2 b2 0 1− a2 a2 − 1 1 0 0
a3 b3 0 1− a3 a3 − 1 0 0 0
a4 b4 1 −a4 a4 − 1 1 −1 1

 ,

for ai, bi ∈ R, 1 ≤ i ≤ 4.

V. CONCLUSIONS

When extended to sequences of matrices, the Berlekamp-
Massey algorithm can be interpreted as the problem of
finding a minimal length right (left) matrix generator or
a minimal realization of the sequence. We analyze these
extensions and the relations between them.

Our work is strongly based on the paper [6]. We relate
the partial Kronecker indices of a sequence with those of a
subsequence. It allows us to characterize the length of the
shortest right and left matrix generators of a sequence of
matrices, and to extend the fundamental theorem on which
the Berlekamp-Massey algorithm is based (Theorem 2.1),
showing that in the matrix case the role of the minimal length
of a register is split into the two parameters α and β (see
Theorem 3.1). As far as we know, this is the first time that the
relation between the partial Kronecker indices of a sequence
and those of a subsequence has been analyzed.

We also provide an iterative method for obtaining α and
β and the partial Kronecker indices of a sequence of vectors.
Thanks to Theorem 3.1, the calculations in some steps can be
skipped. Then, we can find minimal realizations in reduced
controllability and observability forms. And from them, we
also obtain minimal length right and left matrix generators
of the sequence.
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