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Summary: We address H∞ control of a class of systems
governed by parabolic partial differential equations (PDEs).
Closed-form expressions for optimal state feedback with full
information are stated. Unlike traditional methods for H∞-
controller synthesis, no iteration is needed to obtain the optimal
controller and a closed form expression for the controller is
readily calculated. These results are used in improvements
to general purpose algorithms for calculating H∞ control for
PDEs and large-scale systems.

I. INTRODUCTION

The aim of H∞ control is to stabilize a system and also
attenuate its response to disturbances. An iterative approach,
based on calculation of the solution to a series of algebraic
Riccati equations (AREs), is generally used; see [1] for state
feedback and [2] for output feedback of finite-dimensional
systems. This approach was extended to infinite-dimensional
systems in [3]. In [4], the authors presented a closed-form
solution to a H∞ optimal control problem, for a certain class
of systems. This is in contrast to the general purpose method
as the ARE needs to be solved iteratively. This has been
extended to infinite-dimensional systems in [5].

The direct approach described in [5] is appropriate to H∞-
control of a class of systems governed by partial differential
equations (PDEs). Diffusion equations are an important
example included in this class. In general, H∞ synthesis
techniques for systems governed by PDEs, particularly those
in higher space dimensions, needs to be done by first ap-
proximating the given PDE with a finite-dimensional system
of possibly large order. Then, controller synthesis requires
solving large order AREs in an iterative process to find the
optimal attenuation. As for problems originating with finite-
dimensional models, the sign-indefiniteness of the quadratic
term in the H∞-ARE, and the need for an iterative procedure
to find the optimal attenuation, complicate computation. In
[6], the authors address the problem of solution of optimal
attenuation for large order systems by extending the game-
theoretic algorithm in [7].

In this presentation, we extend the results given in [4] and
[5] to formulate the results for finite-dimensional systems on
generalized form. A generalized state-space representation is
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often the result when a PDE is approximated by a finite-
dimensional system. This theory is presented in Section II.

Furthermore, we compare the computation time of our
closed-form H∞ laws to synthesis by two general purpose
algorithms for a heat equation problem on a two dimensional
irregular shape. The direct approach is compared to two
general purpose algorithms; the well known Schur algorithm
[8] and the algorithm described in [6]. The closed-form
approach is several orders of magnitude faster to compute.
Finally, in Section III, the theory is used to improve the
convergence speed of general purpose algorithms when used
on more general classes of equations.

II. OPTIMAL CLOSED-FORM STATE FEEDBACK

In this section, we state the theory concerning closed-
form optimal state feedback for a class of parabolic systems.
Furthermore, we extend the results given in [4] to systems
on generalized state space form. Notice that the first sub-
section treats infinite-dimensional systems while the second
subsection treats finite-dimensional systems.

A. State feedback

Consider a linear time-invariant infinte-dimensional sys-
tem

dz(t)

dt
= Az(t) +Bu(t) +Hd(t) (1)

where the state z(t) ∈ Z and Z is a Hilbert space. The
state z(t) is available for control, and has initial condition
z(0) = 0. Furthermore, the control signal u(t) ∈ U and
the disturbance d(t) ∈ L2(0,∞;V), where U and V are
Hilbert spaces. Furthermore, the operators B ∈ L (U ,Z)
and H ∈ L (V,Z).

We consider the design of a H∞-optimal state feedback
law to (1) given the following regulated output

ζ(t) =

[
z(t)

u(t)

]
.

The transfer function of the closed-loop system from distur-
bance d(t) to regulated output ζ(t) with state feedback law
u(t) = Kz(t), where K ∈ L (Z,U), is given by

dz(t)

dt
= (A+BK)z(t) +Hd(t),

ζ(t) =

[
I
K

]
z(t).

(2)

If K is a stabilizing controller, then A + BK generates an
exponentially stable strongly continuous semigroup, i.e., the
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system is stable. Moreover, the Laplace transform of the
closed-loop system is denoted GK , i.e., ζ = GK(s)d.

The following theorem gives a closed-form expression for
a state feedback controller K that minimizes the L2-gain
of GK , for a certain class of systems (1) namely where the
operator A is closed, densely defined, self-adjoint and strictly
negative. Note that the notation B∗ indicates the adjoint of
the operator B. We denote this optimal controller Kopt.

Theorem 1 ([5]): Consider the system (1) where A is
closed, densely defined, self-adjoint and strictly negative,
B ∈ L (U ,Z) and H ∈ L (V,Z), where Z , U and V are
Hilbert spaces. Then, ‖GK‖∞ is minimized by the state
feedback controller Kopt = B∗A−1 and the minimal value
of the norm is given by ‖H∗(A2 +BB∗)−1H‖

1
2 .

B. Systems with generalized state space representation

Systems with generalized state-space representation, i.e.,
on descriptor form, are often the result when a PDE
is approximated by a finite-dimensional system. Finite-
dimensional approximations are often needed in general H∞
design. Therefore, we treat such systems next. However, we
treat a special class of systems on generalized state-space
form that are the approximation of the infinite-dimensional
systems of the previous subsection.

Let a finite-dimensional system on generalized form be
given by

Eż = Az +Bu+Hd,

ζ =

[
Lz
u

]
,

(3)

where z ∈ Rn, u ∈ Rm, d ∈ Rq and matrices E,
A, B, H and L are of suitable dimensions. This is also
referred to as descriptor form. We consider E symmetric and
positive definite, denoted E � 0 and L to be the Cholesky
factorization of E, i.e., E = LTL. Also, we consider A to
be symmetric and Hurwitz, i.e., negative definite which we
denote A ≺ 0.

Given a control law u = Kz, K ∈ Rm×n, we denote the
transfer function of the closed-loop system by GK , which is
given by

GK(s) =

[
L
K

]
(sE −A−BK)−1H. (4)

The following theorem states a closed-form expression for a
H∞ optimal state feedback controller, i.e., a Kopt such that
the L2-gain from d to ζ is minimized.

Theorem 2: Consider (4) with E � 0 and A ≺ 0.
Then, ‖GK‖∞ is minimized by Kopt = BTA−1E.
The minimal value of the norm is given by
‖HT

(
AE−1A+BBT

)−1
H‖ 1

2 .
Remark 1: Notice that the state variable change z̃ = Lz

in (3) renders a system on non-generalized state space form
with regulated output ζ =

[
z̃T uT

]T
. Thus the vector

Lz is related to the continuous state of the PDE, which
approximation is given by (3).

y

x

Fig. 1. Irregular geometry considered in algorithm comparison.

III. ALGORITHM COMPARISON

In this section, we will compare how much faster our
method to H∞ control of parabolic systems is than the com-
putational speed of that of two general purpose algorithms.
Our method is simply just to compute the control law in
Theorem 2, i.e., the computational time required to compute
BTA−1E. The two methods we will compare it with are
the Schur algorithm, see [8] for a version for generalized
systems, and the method developed in [7] and [6]. The Schur
method is provided in MATLAB [9] and thus one of the
algorithms readily available for users. It is generally good
for small to medium scale problems. The algorithm in [6]
is developed for large-scale problems. All simulations are
performed using Matlab R2015a.

The following example is based on an example presented
in [6]. Consider the heat diffusion problem in two dimen-
sions. The geometry considered is a plane of 4 × 4 units,
with a circle of radius 0.4 units at (3, 1) removed. The lower
left corner of the plane is the origin, see Figure 1.

The heat distribution at position (x, y) at time t is denoted
z(x, y, t) and governed by

∂z

∂t
(x, y, t) =

∂2z

∂x2
+
∂2z

∂y2
+ b(x, y)u(t) + h(x, y)d(t),

(5)
with boundary condition z(x, y, ·) = 0. Furthermore, the
functions b(x, y) and h(x, y) are given by

fr,ε(x, y) =


1
2ε (x, y) ∈ { square centered at r

with side 2ε},
0 otherwise.

The infinite-dimensional system (5) is approximated by
a finite-element method with linear splines. The resulting
finite-dimensional system for a given approximation order is
on the same form as (3).

We considered b(x, y) = f(2,2),0.5(x, y) and d(x, y) =
20 · f(1,1.3),0.1(x, y) for approximated system order ranging
from 20 to 850. The computation time for the Schur method,
game theoretic iterative method in [6] and computation of
our closed-form solution was compared. Our closed-form
solution was at least 100 times faster to compute than that
of the other approaches, when used to calculate a controller
with fixed attenuation 6, that is ‖GK‖∞ < 6. Notice that
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the closed-form approach renders an optimal control law. If
optimal controllers were to be computed through the general
purpose algorithms as well, the gap in computation time
would be even larger. The strength in computational speed
of our approach could have great implications on lowering
the computational time of applications where one needs to
solve several H∞-AREs.

IV. IMPROVEMENTS OF GENERAL PURPOSE ALGORITHMS

In this section, we discuss how insights from the results
stated in Section II can be used to increase the convergence
rate of general purpose algorithms. That is, methods that can
treat systems not only with E � 0 and A ≺ 0.

Bisection algorithms for optimal attenuation need a range
over which to search for the optimal γ. Generally, this range
is set to [0, γ2] where γ2 is the norm of the closed-loop
system given the H2 controller. The following can be used
to specify a tighter range. Given (3) without the assumption
on symmetry and Hurwitz stability of A and

ζ = Cz +Du

with the assumption that DTD = I , DTC = 0 and CTC �
0. Then, the optimal gain is lower bounded as

γopt ≥ ‖HT (AE(CTC)−1ETAT +BBT )−1H‖ 1
2 .

This follows from the proof of Theorem 2. Denote the right
hand side of the inequality above as γlb. The narrowed search
range can thus be specified as [γlb, γ2].

Theorem 2 in Section II is applicable to systems (3)
with A ≺ 0 and E � 0. In closed-loop with the optimal
control law, these systems obtain their maximum L2-gain
at frequency zero. In fact, the control law can be derived
by only considering the static problem. Then, one only
needs to check that the resulting controller can handle the
remaining frequencies with L2-gain smaller than or equal
to that at frequency zero. Possibly, the control law given by
Theorem 2, more generally u = BTA−TEz when there is no
assumption on the symmetry of A, can be used for systems
with A close to symmetric as well.

V. CONCLUSIONS

We present a direct method for H∞ optimal control to a
class of parabolic PDEs. When approximated, the considered
PDEs lead to generalized finite-dimensional systems with
certain symmetry. We provide the closed-form expression
for an H∞ optimal control law to these finite-dimensional
systems. Furthermore, the computational strength of our
approach, in terms of the computation time needed, is easily
illustrated when compared to general purpose algorithms.
Finally, we provide a discussion on how insights made from
the theory presented can be used to increase the convergence
speed of general purpose algorithms.
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