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Abstract— We presents a continuous-time multi-agent system
for distributed saddle-point seeking subject to bounded con-
straints. In the system, two groups of agents are employed for
computing the two state vectors in a saddle-point, respectively.
Each agent seeks for consensus with the agents in the same
group, and simultaneously optimize its local objective func-
tions by competing with the agents in the opposite group. A
projection operator is introduced into the dynamics of each
agent for dealing with bounded constraints. Two types of local
interactions are considered. First, we consider proportional
consensus protocols only. In this case, the gradient term of
each agent is equipped with a disminishing gain. Second, we
consider proportional-integral consensus protocols but without
diminishing gain. In both cases, it is shown that the proposed
systems can converge to the saddle-point set of a convex-concave
function provided the communication topology is undirected
and connected.

I. EXTENDED ABSTRACT

Recent years have seen a flurry of research on collective
dynamics analysis and distributed control in networked sys-
tems due to their wide applications in science and engineer-
ing, see [1], [2], [3], [4], [5], [6], [7] and references therein.
A typical problem of interest is to achieve a networked-
level objective, such as consensus, by a group of cooperative
agents via local interactions. Among these, consensus-based
distributed optimization has received considerable attentions,
as it exists widely in various applications including machine
learning [8], signal processing [9], etc. In this problem, the
networked-level objective is to optimize a global function,
whose information is distributedly known by the agents.
The optimal solution is attained via local interaction among
agents. Compared with the centralized methods, the dis-
tributed ones have the advantage in scalability, robustness
and privacy protection.

A. Problem Formulation
We are interested in seeking a saddle-point of F(x,y) on

X ×Y by using a distributed method based on multi-agent
networks. Suppose that the information of F(x,y) is dis-
tributed over two groups of disjoint agents V1 = {1,2, · · · ,n1}
and V2 = {1,2, · · · ,n2}, i.e., F(x,y) can be expressed as

F(x,y) = ∑
i∈V1

f i
1(x,y) = ∑

i∈V2

f i
2(x,y), (1)

where f i
` (i ∈ V`, ` ∈ {1,2}) is a convex-concave function

assigned to agent i ∈ V` only. Denote the states of agents
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i ∈ V1 and i ∈ V2 by xi ∈ Rd1 and yi ∈ Rd2 , respectively. All
agents in the two groups can share state information with
others. Our objective is to achieve

lim
t→∞

xi(t) = x∗, ∀i ∈ V1, (2a)

lim
t→∞

yi(t) = y∗, ∀i ∈ V2, (2b)

with (x∗,y∗) ∈ X∗×Y ∗ by designing proper dynamics of all
agents.

B. Multi-Agent Models

First, we introduce the multi-agent system with diminish-
ing gains. The dynamics of all agents are given as

ẋi ∈ ∑ j∈V1
ai j(x j− xi)−α(t)∂x f i

1(xi, ỹi)
+PX (xi)− xi, i ∈ V1,

ẏi ∈ ∑ j∈V2
ai j(y j− yi)+α(t)∂y f i

2(x̃i,yi)
+PY (yi)− yi, i ∈ V2,

(3)

where [ai j] is the adjacent matrix of the underlying commu-
nication graph G among agents, α(t) > 0 is a continuous
gain satisfying limt→∞ α(t) = 0,

∫
∞

t0 α(t)dt =+∞, ỹi (i ∈ V1)
and x̃i (i ∈ V2) are defined as

ỹi =
∑ j∈V2

ai jPY (y j)

∑ j∈V2
ai j

, x̃i =
∑ j∈V1

ai jPX (x j)

∑ j∈V1
ai j

. (4)

Second, we introduce the multi-agent system with constant
gains. The dynamics of all agents are given as

ẋi ∈ ∑ j∈V1
ai j(x j− xi)+

∫ t
0 ∑ j∈V1

ai j(x j(s)− xi(s))ds
−α∂x f i

1(xi, ỹi)+PX (xi)− xi, i ∈ V1,

ẏi ∈ ∑ j∈V2
ai j(y j− yi)+

∫ t
0 ∑ j∈V2

ai j(y j(s)− yi(s))ds
+α∂y f i

2(x̃i,yi)+PY (yi)− yi, i ∈ V2,
(5)

where α > 0 is a constant gain.
Assume that each f i

` (i ∈ V`, ` ∈ {1,2}) is coercive, i.e.,
lim‖(x,y)‖→∞ | f i

`(x,y)| = ∞. The communication graph G is
undirected and connected. In addition, there is a constant
L > 0 such that ‖γ‖ ≤ L, where γ ∈ ∂x f i

1(x,y)
⋃

∂y f i
2(x,y),

∀i ∈ V1, ∀ j ∈ V2, ∀x ∈ X ,∀y ∈Y . We can theoretically show
that both of the above two multi-agent systems can achieve
(2).
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