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Abstract— The paper considers 2D discrete nonlinear systems
described by either the Fornasini-Marchesini or Roesser state-
space models. Converse stability theorems are developed, which
establish that, if an example is exponentially stable, there
exists a vector Lyapunov function with particular properties
of its entries and the discrete counterpart of divergence. The
extension of these results to some class of stochastic models are
also given.
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I. INTRODUCTION

Multidimensional (nD) models describe systems with dy-
namics that evolve in n > 1 independent directions. This
paper considers 2D discrete nonlinear systems, where the
state-space models include the nonlinear versions of the
Fornasini-Marchesini [1] and Roesser state-space models [2]
and repetitive process models [3] (this reference deals with
linear dynamics only). The Roesser model has its origins
in image processing problems where the state dynamics are
partitioned into two sub-vectors, one for each direction of
information propagation and commonly termed the hori-
zontal and vertical respectively. In the Fornasini-Marchesini
model [1] a single state vector is used.

Results on the stability of nD nonlinear systems have been
reported, e.g., [4]–[10] and the relevant references therein
but the area is relatively less well developed than for linear
dynamics. Support for the development of a stability and
control theory for 2D nonlinear systems that can be extended
to stabilization is supplied by examples such as laser metal
deposition processes [11], [12]. Moreover, in the linear model
case, some results developed for one representation, e.g.,
linear repetitive processes can also applied to another, e.g.,
the Roesser model. This is much less likely to be the case
for nonlinear dynamics and hence the need to consider
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the Fornasini-Marchesini and Roesser state-space models
separately.

In this paper the interest is in the construction of Lyapunov
functions for stable Fornasini-Marchesini and Roesser state-
space model descriptions of 2D discrete nonlinear dynamics.
In the case of systems that are functions of one indeterminate,
also termed standard or 1D in some of the multidimensional
systems literature, the importance of converse theorems is
that it is possible to prove results on total stability, which is
a very important property in applications, see, e.g., [13]–[16]
and the references therein.

II. CONVERSE LYAPUNOV THEOREM FOR
NONLINEAR FORNASINI-MARCHESINI SYSTEMS

The 2D discrete nonlinear systems considered in this
section are described, in the absence of input terms, by the
Fornasini-Marchesini state-space model

xi+1, j+1 = f (xi, j+1,xi+1, j), i≥ 0, j ≥ 0, (1)

where xi, j ∈ Rnx is the local state vector and f is a vector-
valued function whose entries satisfy f (0,0) = 0 and hence
there is an equilibrium at the origin. The boundary conditions
are assumed to be of the form

xi,0 = ξ0(i), i≥ 0, x0, j = η0( j), j ≥ 0, (2)

where ξ0(i) and η0( j) are vectors whose entries are known
functions of i and j respectively. Also, it is assumed that
there exist finite real numbers ρ > 0, σ > 0 and 0 < ζ0 < 1
such that

|xi,0|2 = |ξ0(i)|2 ≤ ρζ
i
0, i≥ 0,

|x0, j|2 = |η0( j)|2 ≤ σζ
j

0 , j ≥ 0. (3)

where throughout this paper | · | denotes the Euclidean norm
on vectors.

In this last equation, ζ0 represents the rate of convergence
in i and j of the boundary local state vector sequences. From
this point onwards, all references to the boundary conditions
will assume that they satisfy (3). In other work, e.g., [4] and
the references therein it is assumed that |ξ0(i)| and |η0( j)| are
bounded or constant along i and j on some finite intervals.
In this practically motivated case it is routine to obtain the
upper bounds in (3). Hence the boundary conditions assumed
in this other work are included in (3)

The stability theory developed for 2D discrete linear
Fornasini-Marchesini systems has been defined in both the
internal, or state, and bounded-input bounded-output settings.
Previous research on the stability of 2D discrete nonlinear
systems described by this model includes [5], where stability
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and asymptotic stability were defined and sufficient condi-
tions for their existence obtained in a manner similar to the
second Lyapunov stability theorem. In [4] sufficient condi-
tions for global asymptotic stability were developed for zero-
input 2D digital filters described by a Fornasini-Marchesini
state-space model where the nonlinearity arises from a class
of overflow errors. This paper further develops the results of
[8], [9] towards the construction of Lyapunov functions based
on converse Lyapunov theorems. As in the case, of standard,
also termed 1D in some of the multidimensional systems, it
is to be expected that this stronger form of stability will be
required in at least some applications, the starting stability
definition is given next.

Definition 1: A 2D discrete nonlinear 2D system de-
scribed by the Fornasini-Marchesini state-space model (1) is
said to be exponentially stable if for all boundary conditions
satisfying (3) there exist κ > 0 and 0 < λ < 1 such that

|xi, j|2 ≤ κλ
i+ j, i, j ≥ 0. (4)

Exponential stability for the linear dynamics case was con-
sidered in [17]. This stability theory is physically motivated
by applications where such a system would never be operated
with boundary conditions that can diverge as the dynamics
evolve. For the autonomous case under consideration the
state vector must decay to zero as i+ j→ ∞, which results
in a strong form of stability since the boundary conditions
are required to have a uniform convergence property.

One way of characterizing exponential stability would be
to attempt to use a Lyapunov function approach as in the
stability analysis of 1D nonlinear systems. The Lyapunov
approach is based on properties of the function itself and
for discrete dynamics of its increments, but the dynamics
considered are determined by vector-valued functions of the
two independent variables i and j. A candidate Lyapunov
function for these systems could be chosen as a scalar
function, say Ṽ (i, j), but to construct the gradient along
the system trajectories it is required to have xi+1, j − xi, j
and xi, j+1 − xi, j. These quantities can only be found by
solving (1), but then all of the advantages of the Lyapunov
approach are lost.

As an alternative, previous work has used a vector Lya-
punov functions approach for other classes of 2D nonlinear
systems, see, e.g., [7], where for discrete dynamics a coun-
terpart of divergence was used instead of the gradient. The
analysis that follows uses a similar setting to characterize the
property of Definition 1 using a vector Lyapunov function
of the form

V (xi, j+1,xi+1, j) =

[
V1(xi, j+1)
V2(xi+1, j)

]
, (5)

where V1(x)> 0, x 6= 0, V2(x)> 0, x 6= 0, V1(0)= 0, V2(0)=
0. Also the counterpart of the divergence operator of this
function along the trajectories of (1) is

DV (xi, j+1,xi+1, j) =V1(xi+1, j+1)−V1(xi, j+1)

+V2(xi+1, j+1)−V2(xi+1, j). (6)

The following is a converse theorem for this stability
property.

Theorem 1: Suppose that a 2D discrete nonlinear system
described by (1) with boundary conditions satisfying (3)
is exponentially stable in the sense of Definition 1. Then
there exists a vector Lyapunov function (5) with entries that
are bounded on the solutions of (1) and satisfies, for some
positive constants c1, and c3 the following inequalities

V1(xi, j) ≥ c1|xi, j|2, (7)

V2(xi, j) ≥ c1|xi, j|2, (8)

DV (xi, j+1,xi+1, j) ≤ −c3(|xi, j+1|2 + |xi+1, j|2). (9)
Proof: Let xr,s, r ≥ 0, s ≥ 0 be a exponentially stable

solution of (1) with boundary conditions satisfying (2).
Define on this solution the entries in the function V (x) of (5)
such that

V1(xi, j) = α

∞

∑
m=i

∞

∑
q= j
|xm,q|2,

V2(xi, j) = β

∞

∑
m=i

∞

∑
q= j
|xm,q|2, α > 0, β > 0.

By exponential stability V1 and V2 are well defined. More-
over, these functions are uniquely defined since the solutions
of (1) are uniquely defined by the boundary conditions
assumed. Choosing c1 ≤min(α,β ) gives

c1|xi, j|2 ≤ α

∞

∑
m=i

∞

∑
q= j
|xm,q|2 =V1(xi, j),

c1|xi, j|2 ≤ β

∞

∑
m=i

∞

∑
q= j
|xm,q|2 =V2(xi, j)

and both (7) and (8) are valid. By the exponential stability
property

∞

∑
m=i

∞

∑
q= j
|xm,q|2 ≤ κ

∞

∑
m=i

∞

∑
q= j

λ
m

λ
q =

κ

(1−λ )2

and it follows that V1 and V2 are bounded on the solutions
of (1) with the required properties. Moreover,

DV (xi, j+1,xi+1, j) =V1(xi+1, j+1)−V1(xi, j+1)

+V2(xi+1, j+1)−V2(xi+1, j)

= α

(
∞

∑
m=i+1

∞

∑
q= j+1

|xm,q|2−
∞

∑
m=i

∞

∑
q= j+1

|xm,q|2
)

+β

(
∞

∑
m=i+1

∞

∑
q= j+1

|xm,q|2−
∞

∑
m=i+1

∞

∑
q= j
|xm,q|2

)

=−α

∞

∑
q= j+1

|xi,q|2−β

∞

∑
m=i+1

|xm, j|2

≤−α|xi, j+1|2−β |xi+1, j|2

≤−min(α,β )(|xi, j+1|2 + |xi+1, j|2)

and it follows that (9) holds with c3 = min(α,β ). This
completes the proof.
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III. CONVERSE LYAPUNOV THEOREM FOR
NONLINEAR ROESSER SYSTEMS

In the linear dynamics case it is often possible to transfer
results easily between Fornasini-Marchesini and Roesser
models and vice versa. This is not the case for nonlinear
dynamics and this section considers 2D discrete nonlinear
systems described, in the absence of input terms, by the
Roesser state-space model

xh
i+1, j = f1(xh

i, j,x
v
i, j),

xv
i, j+1 = f2(xh

i, j,x
v
i, j), i≥ 0, j ≥ 0, (10)

where xh ∈ Rnh is horizontal state vector, xv ∈ Rnv , is
vertical state vector, f1, and f2 are vector-valued functions,
where it is assumed that the entries are such that f1(0,0) =
0, f2(0,0) = 0 and hence an equilibrium at the origin. The
boundary conditions are assumed to be of the form

xh
0, j = ξ

h
0 ( j), j ≥ 0,

xv
i,0 = ξ

v
0 (i), i≥ 0, (11)

where ξ h
q (i) and ξ h

m( j) are vectors whose entries are known
functions of i and j respectively. It is assumed there exist
finite real numbers αh > 0, αv > 0 and 0 < ζ0 < 1 such that

|xh
0, j|2 = |ξ h

0 ( j)|2 ≤ αhζ
j

0 , j ≥ 0,

|xv
i,0|2 = |ξ v

0 (i)|2 ≤ αvζ
i
0, i≥ 0. (12)

From this point onwards, all references to the boundary
conditions will assume that they satisfy (12). These boundary
conditions include the important practically motivated case
when |ξ h

0 ( j)| and |ξ v
0 (i)| are bounded or constant along i and

j over finite intervals.
Introduce the full state vector as xi, j = [xhT

i, j xvT
i, j ]

T . Then
the following is the definition of exponential stability for the
model considered.

Definition 2: A 2D discrete nonlinear system described
by (10) is said to be exponentially stable if for all boundary
conditions satisfying (12) there exist κ > 0 and 0 < λ < 1,
such that

|xi, j|2 ≤ κλ
i+ j, i≥ 0, j ≥ 0. (13)

Remark 1: An alternative definition of exponential stabil-
ity for 2D discrete nonlinear systems described the Roesser
model is given in [6].

Consider a vector Lyapunov function of the form

V (xi, j) =

[
V1(xh

i, j)

V2(xv
i, j)

]
, (14)

where V1(x)> 0, x 6= 0, V2(x)> 0, x 6= 0, V1(0)= 0, V2(0)=
0. The counterpart of the divergence operator of this function
along the trajectories of (10) is

DV (xi, j) =V1(xh
i+1, j)−V1(xh

i, j)+V2(xv
i, j+1)−V2(xv

i, j). (15)

The following converse theorem can now be established.
Theorem 2: Suppose that a discrete nonlinear 2D system

described by (10) and (11) is exponentially stable. Then
there exists a vector Lyapunov function (14) whose entries

are bounded on the solutions to (10) and satisfies for some
positive constants c1 and c2, the inequalities

V1(xh
i, j) ≥ c1|xh

i, j|2, (16)

V2(xv
i, j) ≥ c2|xv

i, j|2, (17)

DV (xi, j) ≤ −c3(|xh
i, j|2 + |xv

i, j|2). (18)
Proof: Define on the solutions to (10) with boundary

conditions (11) the entries in the function (14) as

V1(xh
i, j) =

∞

∑
m=i

∞

∑
q= j
|xh

m,q|2, V2(xv
i, j) =

∞

∑
m=i

∞

∑
q= j
|xv

m,q|2.

By exponential stability, V1 and V2 are well defined. Also
these functions are uniquely defined because the solutions
of (10) are uniquely defined by the boundary conditions
assumed. Choosing c1 ≤ 1 gives

c1|xh
i, j|2 ≤

∞

∑
m=i

∞

∑
q= j
|xh

m,q|2 =V1(xh
i, j),

c2|xv
i, j|2 ≤

∞

∑
m=i

∞

∑
q= j
|xv

m,q|2 =V2(xv
i, j).

Also by exponential stability
∞

∑
m=i

∞

∑
q= j
|xh

m,q|2 ≤ κ

∞

∑
m=i

∞

∑
q= j

λ
m−i

λ
q− j =

κ

(1−λ )2 ,

∞

∑
m=i

∞

∑
q= j
|xv

m,q|2 ≤ κ

∞

∑
m=i

∞

∑
q= j

λ
m−i

λ
q− j =

κ

(1−λ )2 .

and it follows that both V1 and V2 are bounded along the
trajectories of (10). Moreover,

DV (xi, j) =V1(xh
i+1, j)−V1(xh

i, j)+V2(xv
i, j+1)−V2(xv

i, j)

=

(
∞

∑
m=i+1

∞

∑
q= j
|xh

mq|2−
∞

∑
m=i

∞

∑
q= j
|xh

m,q|2
)

+

(
∞

∑
m=i

∞

∑
q= j+1

|xv
m,q|2−

∞

∑
m=i=

∞

∑
q= j
|xv

m,q|2
)

=−
∞

∑
q= j
|xh

i,q|2−
∞

∑
m=i
|xv

m, j|2 ≤−|xh
i, j|2−|xv

i, j|2

and it follows immediately that (18) holds with c3 ≤ 1 and
the proof is complete.

IV. STOCHASTIC FORNASINI-MARCHESINI
SYSTEMS

This section considers stochastic 2D discrete nonlinear
systems described by the Fornasini-Marchesini state-space
model

xi+1, j+1 = f (xi, j+1,xi+1, j)+G1(xi, j+1,xi+1, j)vi, j+1

+ G2(xi, j+1,xi+1, j)vi+1, j, i≥ 0, j ≥ 0, (19)

where xi, j ∈ Rnx is the local state vector, vi, j is a
vector-valued discrete zero mean random process such that
E[vi,kvT

j,l ] = 0 if i 6= j or k 6= l, E[vi, jvT
i, j] = I, E denotes the

expectation operator, f is a vector-valued function such that
f (0,0) = 0, Gi, i = 1,2, are matrix-valued functions, such
that Gi(0,0) = 0, i = 1,2 and hence an equilibrium at the

MTNS 2018, July 16-20, 2018
HKUST, Hong Kong

668



origin. The boundary conditions are assumed to be of the
following form (the stochastic counterpart of (2))

E[|xi,0|2] = E[|ξ0(i)|2]≤ ρζ
i
0, i≥ 0,

E[|x0, j|2] = E[|η0( j)|2]≤ σζ
j

0 , j ≥ 0. (20)

where ξ0(i) and η0( j) are vectors whose entries are known
random sequences on i≥ 0 and j ≥ 0, respectively, and 0 <
ζ0 < 1. In particular, ζ0 represents the rate of convergence in
i ≥ 0 and j ≥ 0 of the mean-square norms of the boundary
local state vector sequences. From this point onwards, all
references to the boundary conditions will assume that they
satisfy (20). It is also assumed that vi, j does not depend on
the sequences ξ0(i) and η0( j) for all i, j. As in deterministic
case the boundary conditions (20) include the case when
E[|ξ0(i)|2] and E[|η0( j)|2] are bounded or constant along i
and j on some finite intervals.

Definition 3: A 2D discrete nonlinear system described
by (19) is said to be exponentially stable in the mean square
if for all boundary conditions satisfying (20) there exist κ > 0
and 0 < λ < 1, such that

E[|xi, j|2]≤ κλ
i+ j. (21)

The analysis that follows makes use of a vector function of
the form (5) and the stochastic counterpart of the divergence
operator of this function along the trajectories of (19) is

Dξ ,ηV (xi, j+1,xi+1, j) = E[V1(xi+1, j+1)−V1(xi, j+1)

+V2(xi+1, j+1)−V2(xi+1, j)|xi, j+1 = ξ , xi+1, j = η ]. (22)

The following converse theorem can now be established.
Theorem 3: Suppose that a 2D discrete nonlinear system

described by (19) and (20) is exponentially stable in the mean
square in the sense of Definition 3. Then there exists a vector
function of the form (5), whose entries are bounded in the
mean square along the trajectories (19) and satisfy for some
positive constants c1 and c3 and the inequalities

V1(ξi, j) ≥ c1|ξi, j|2, (23)

V2(ηi, j) ≥ c1|ηi, j|2, (24)

Dξ ,ηV (xi, j+1,xi+1, j) ≤ −c3(|ξ |2 + |η |2). (25)
Proof: Define on the solutions of (19) with boundary

conditions (20) the entries in the vector function (5) in the
form

V1(ξi, j) = α

∞

∑
m=i

∞

∑
q= j

E[|xm,q|2|xi, j = ξi, j],

V2(ηi, j) = β

∞

∑
m=i

∞

∑
q= j

E[|xm,q|2|xi, j = ηi, j] α > 0, β > 0.

Since exponential stability in the mean square holds, both V1
and V2 are well defined. Also choosing c1 ≤min(α,β ) gives

c1|ξi, j|2 ≤ α

∞

∑
m=i

∞

∑
q= j

E[|xm,q|2|xi, j = ξi, j] =V1(ξi, j),

c1|ηi, j|2 ≤ β

∞

∑
m=i

∞

∑
q= j

E[|xm,q|2|xi, j = ηi, j] =V2(ηi, j)

and it follows from the condition for exponential stability
that

∞

∑
m=i

∞

∑
q= j

E[|xm,q|2]≤ κ|xi, j|2
∞

∑
m=i

∞

∑
q= j

λ
m−i

λ
q− j =

κ

(1−λ )2 .

Choosing c2 ≥ max(α,β ) κ

(1−λ )2 gives that (23) and (24)
hold. Also, using properties of conditional expectation gives

Dξ ,ηV (xi, j+1,xi+1, j) = E[V1(xi+1, j+1)−V1(xi, j+1)

+V2(xi+1, j+1)−V2(xi+1, j)|xi, j+1 = ξ , xi+1, j = η ]

= αE

[
∞

∑
m=i+1

∞

∑
q= j+1

|xm,q|2−
∞

∑
i=m

∞

∑
j=q+1

|xm,q|2
∣∣∣∣∣xi, j+1 = ξ ,

xi+1, j = η ]+βE

[
∞

∑
m=i+1

∞

∑
q= j+1

|xm,q|2−
∞

∑
m=i+1

∞

∑
q= j
|xm,q|2

∣∣∣∣∣xi, j+1

= ξ ,xi+1, j = η ] = E

[
−α

∞

∑
q= j+1

|xm,q|2−β

∞

∑
m=i+1

|xm,q|2
∣∣∣∣∣

xi, j+1 = ξ , xi+1, j = η ]≤−α|ξ |2−β |η |2

≤−min(α,β )(|ξ |2 + |η |2).

It follows immediately that (25) holds with c3 = min(α,β )
and the proof is complete.

V. CONCLUSIONS

The results developed in this paper generalize to 2D
discrete nonlinear systems described by the Fornasini-
Marchesini and Roesser state-space models the fact that it
is possible to construct a Lyapunov function only if solution
of the considered systems is known. In case of linear 1D
systems, the Lyapunov function is in homogeneous form
and application of the converse theorem gives necessary and
sufficient stability conditions, which easily are reduced to
the algebraic problem of solvability of the matrix Lyapunov
equation/inequality. The extension of this result to the sys-
tems considered in this paper is one area to which future
research could be directed.
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