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1. Extended Abstract

Let f : (a, b)→ R. Given a self-adjoint matrix A with spectrum in (a, b) diagonalized by a unitary matrix
U, that is,

A = U∗

λ1 0 . . .
0 λ2 . . .
...

...
. . .

U

we define the expression f(A) via the following formula.

f(A) = U∗

f(λ1) 0 . . .
0 f(λ2) . . .
...

...
. . .

U.

When f is given by a formula, such as a polynomial or rational function, the functional calculus reduces to
substituting a matrix into the formula.

For example, let
f(x) = x2,

and let
A = ( 1 1

1 1 ) .

We get that

f(A) = A2 = ( 1 1
1 1 )

2
= ( 2 2

2 2 ) .

Let A and B be self-adjoint matrices. We say A ≤ B if B −A is positive semi-definite. We say A < B if
B −A is positive definite.

Given f : (a, b)→ R, we say f is matrix monotone if, for any natural number n ∈ N, and any pair of n
by n self-adjoint matrices A and B with spectrum in (a, b),

A ≤ B ⇒ f(A) ≤ f(B).

The class of matrix monotone functions is strict subset of the set of monotone functions. That is, there is a
function f, which is monotone, which is not matrix monotone. The difference mirrors the difference between
positive maps and completely positive maps.

1.1. A monotone map which is not matrix monotone. Let f(x) = x3. The function f is monotone
increasing on all of R. Note,

( 1 1
1 1 ) ≤ ( 2 1

1 1 )

since
( 2 1
1 1 )− ( 1 1

1 1 ) = ( 1 0
0 0 )

is positive semidefinite. However,

f ( 1 1
1 1 ) = ( 4 4

4 4 ) , f ( 2 1
1 1 ) = ( 13 8

8 5 )

and ( 13 8
8 5 ) − ( 4 4

4 4 ) = ( 9 4
4 1 ) is not positive semidefinite since the determinant is −7. Thus, x3 is not matrix

monotone on all of R.
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1.2. A matrix monotone map. Let f(x) = −x−1. We will show f is matrix monotone on (0,∞). Let
A ≤ B with spectrum in the positive reals. Let H = B −A. By the fundamental theorem of calculus

f(B)− f(A) =

∫ 1

0

Df(A+ ξH)[H]dt

where Df(X)[H] = d
dtf(X+ tH)|t=0. So, it is enough to show that Df(X)[H] is positive semidefinite. Now,

Df(X)[H] = lim
t→0

f(X + tH)− f(X)

t

= lim
t→0

−(X + tH)−1 +X−1

t

= lim
t→0

(X + tH)−1HX−1

= X−1HX−1.

Since, H = B −A ≥ 0, H1/2 exists, and, so,

Df(X)[H] = X−1HX−1 = (H1/2X−1)∗H1/2X−1 ≥ 0.

So, −x−1 is matrix monotone.

1.3. Löwner’s theorem. Let H denote the upper half plane in C.

Theorem 1.1 (Löwner [7]). Let f : (a, b) → R. The function f is matrix monotone if and only if f
analytically continues to H as a function F : H ∪ (a, b)→ H which is continuous on H ∪ (a, b).

For example x1/3, log x and − 1
x are matrix monotone on (1, 2) but x3 and ex are not. Similar results were

obtained by Hansen [4] Agler, McCarthy and Young [1] and the author [10] on functions f : (a, b)d → R over
various functional calculi of commuting operators.

We say a function f : (a, b)d → R is locally matrix monotone if Df(X)[H] ≥ 0 whenever X =
(X1, . . . , Xd) is a d-tuple of commuting self-adjoint matrices (note these can be jointly diagonalized) and
H = (H1, . . . ,Hd) is tuple of positive semi-definite matrices such that H points into the variety of tuples of
commuting self-adjoints at X.

Theorem 1.2 (Agler, McCarthy, Young [1], Pascoe [10]). Let f : (a, b)2 → R. The function f is locally
matrix monotone if and only if f analytically continues to H2 as function F : H2 ∪ (a, b)2 → H which is
continuous on H2 ∪ (a, b)2.

The original work of Agler, McCarthy, Young required that f be C1. In more than two variables similar
results hold, but the analytic continuation is in a more special class of functions from Hd to H.

2. Manipulating systems of matrix inequalities

Our goal now is to generalize Löwner’s theorem to systems of matrix inequalities. That is, we want to
have a multi-variable analogue of Löwner’s theorem which gives an easy criterion to check if a function in
several variables is matrix monotone on general tuples of matrices that might not commute. First, we will
give two examples which have been studied thoroughly.

2.1. The Schur complement. Given a block 2 by 2 matrix

A =
(
A11 A12

A21 A22

)
,

we define the Schur complement to be

A/A22 = A11 −A12A
−1
22 A21.

Classically, it was shown that A is positive definite if and only if A is self-adjoint, A22 is positive definite,
and A/A22 is positive definite.
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Theorem 2.1 (Anderson [2]). Let

A =
(
A11 A12

A21 A22

)
, B =

(
B11 B12

B21 B22

)
be positive definite block 2 by 2 matrices. If A ≤ B, then A/A22 ≤ B/B22.

This says that the Schur complement is matrix monotone on positive definite block 2 by 2 matrices. This
fact has been rediscovered, reimagined and applied many times, including work of Liu-Wang[9], Bhatia [3].

2.1.1. Matrix means. Pusz and Woronowicz [14] showed that given a pair of positive definite matrices A and
B of the same size there exists a maximum positive definite matrix C such that

( A C
C B ) is positive-semidefinite,

and, moreover, C is given by the concrete formula

C = A#B = A1/2(A−1/2BA−1/2)1/2A1/2.

They called A#B the matrix geometric mean. Notably, A#B is equal to the ordinary geometric mean√
AB when A and B are 1 by 1 matrices.

Theorem 2.2 (Pusz and Woronowicz[14]). Let (A1, B1) and (A2, B2) be pairs of positive definite n by n
matrices. If A1 ≤ A2 and B1 ≤ B2, then A1#B1 ≤ A2#B2.

The above theorem was generalized by Kubo-Ando[8], Hansen[5], and many others. The analysis in
Hansen makes heavy use of the Nevanlinna representation, and classifies many related means. Many of the
current developments concern means of more than 2 matrices.

2.2. The noncommutative Löwner theorem. We define the matrix universe

Md =
⋃
n∈N

Mn(C)d.

We endow Md with the disjoint union topology. Let D ⊆Md. We say f : D →Mg is a noncommutative
function if it is a pointwise limit of g-tuples of noncommutative free polynomials in d variables. Any
tuple of noncommutative polynomials or rational functions will be a noncommutative function. The Schur
complement and the matrix geometric mean give examples of noncommutative functions.

An Archimedian linear pencil is a map L(X1, . . . , Xn) =
∑d

i=1 Li ⊗ Xi such that there is a point
(X1, . . . , Xn) ∈ Md such that L takes a positive definite value. Here the Li are some fixed matrices.
We say A ≤L B if L(B −A) is positive semi-definite. Define the interval IL by the formula

IL = {X ∈Md|0 ≤L X ≤L 1}.

A noncommutative function f : IL →M1 is matrix monotone if

A ≤L B ⇒ f(A) ≤ f(B).

We define Π to be matrices inM1 with positive imaginary part. (That is, Im X = (X −X∗)/2i, positive
semi-definite.) Similarly, ΠL to be the tuples of matrices Y in Md such that L(Y ) has positive imaginary
part. These are the noncommutative analogues of upper half planes.

For example, we had that the Schur complement was monotone with respect to the ordering induced by

L(X11, X12, X21, X22) =
(
X11 X12

X21 X22

)
.

For the matrix geometric mean, we had that it was monotone with respect to

L(A,B) = ( A 0
0 B ) .

For classical one variable matrix monotonicity, we can take L(X) = X.

Theorem 2.3 (The noncommutative Löwner theorem. P-Tully-Doyle[12], Pascoe [13]). Let L be an Archi-
median linear pencil. Let f : IL →M1 be a self-adjoint valued noncommutative function on IL. The function
f is matrix monotone if and only if it extends to a continuous noncommutative function on ΠL ∪ IL which
is analytic on ΠL and takes values in Π.
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The results in[13] relax some additional smoothness hypotheses that on f assumed in[12]. Moreover, the
results in[13] allow for block matrix outputs and more. In both cases, the results can be stated on general
matrix convex sets. The current author and Tully-Doyle [12] also developed analogues of the Nevanlinna
representation, for which the analogue of the “support” was described by Williams [15].

Recall the Schur complement,
X/X22 = X11 −X12X

−1
22 X21.

We can see that the natural extension of its formula has positive imaginary part via the following formula:

Im X/X22 =
(

1
(X∗

22)
−1X∗

12

)∗ [
Im

(
X11 X12

X21 X22

)] ( 1
(X∗

22)
−1X∗

12

)
which witnesses the matrix monotonicity by our theorem. Moreover, for any noncommutative rational
function, one can elicit similar “algebraic certificates” using the NC rational Positivstellensatz[11], which
relies on algorithms of Helton-Klep-Nelson [6].
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