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Abstract— Security of networked Bayesian source localization
algorithms is analysed in this paper. The Bayesian estimators
construct the probability density function of the location
of the source from quantised measurements. Understanding
fundamental limits in the performance of an adversary for
manipulating the posterior of the Bayesian estimator is the main
focus of the paper. The analysis is performed for cases where
the estimator is not aware of the presence of the adversary. The
results are then generalized to the case where the estimator is
aware of the attacker.

I. INTRODUCTION

Finding the source of leakages and contaminants within
an environment is an application of source localization.
Source localization can be done using multi-agent robotic
systems in a distributed manner [1]–[3]. In these distributed
approaches, each agent relies on the measurements of other
agents to estimate the location of the source collaboratively.
While more efficient in the use of resources and faster in
convergence, the distributed nature of these methods leaves
them vulnerable to cyber-security attacks. For instance, if
one of the agents is high-jacked, an adversary can feed
wrong data to the other agents in an strategic manner so
that they cannot localize (or mistakenly localize) the source.
This paper studies such attacks and provides fundamental
bounds on their impacts.

An important family of source localization algorithms
rely on the Bayesian estimators to construct the probability
density function of obtaining a positive signal detection
for binary measurements or the distribution of chemical
pollutants for more detailed quantised measurements. Se-
curity analysis of such localization methods is of interest
in this paper. Specifically, understanding the fundamental
limits in the performance of an adversary for manipulating
the posterior of the Bayesian estimator is the main topic
of this paper. First, the analysis is performed for the cases
where the estimator is not aware of the presence of the
adversary. This is important for analysis of covert attacks
or quantifying effectiveness of security attacks prior to the
detection of an adversary. Subsequently, the case where the
estimator is aware of the attacker is studied. In this case,

The authors are with the Department of Electrical and Electronic
Engineering at the University of Melbourne, Parkville, Australia.
e-mails: dselvaratnam@student.unimelb.edu.au and {ffarokhi,
ishames}@unimelb.edu.au

The work of F. Farokhi was supported by the McKenzie Fellowship from
the University of Melbourne, the VESKI Fellowship from the Victorian
State Government, and a grant (MyIP: ID6874) from Defence Science and
Technology Group (DSTG). The work of D. Selvaratnam and I. Shames was
supported by a grant (MyIP: ID6874) from Defence Science and Technology
Group (DSTG). D. Selvaratnam is further supported by a PhD scholarship
from the University of Melbourne.

the estimator, unsurprisingly, acts more conservatively while
processing the received information.

The topic of this paper has close connections to the
Bayesian persuasion [4], [5] and cheap talk [6], [7] literature
in economics. In these studies, a well-informed sender is
passing a message to an uninformed receiver with the inten-
tion of manipulating its decision. Contrary to this paper, in
those studies, the receiver is always aware of the presence of
the adversary. This knowledge turns out to play a significant
role on the ability of the adversary.

This paper also has close connections to the topic of secu-
rity of cyber-physical systems within the control and signal
processing community [8]–[11]. This is an ever expanding
field of research motivated by the impact of security flaws in
networked devices on the underlying dynamical systems. The
analysis of the security of the Bayesian estimators for source
localization has been missing from this field of research.

The rest of the extended abstract is organized as follows.
The problem formulation is presented in Section II. Sec-
tion III contains fundamental bounds on the performance of
the adversary for fooling the Bayesian estimator. Finally, the
paper is concluded in Section IV.

II. PROBLEM FORMULATION

Consider the problem in which we are interested in esti-
mating the distribution of a random variable X that takes
values in a finite set X, e.g., containing all the possible
locations for a contaminant. The probability function of X
is given by pX : X → [0, 1], i.e., P{X = x} = pX(x).
This is the prior for X . The estimator is interested in finding
the posterior pX|M (x|m) := P{X = x |M = m} based on
the received (possibly stochastic) message M , which takes
values in a finite set M e.g., a binary value determining if
traces of the contaminant is sensed (or not). The conditional
probability of the message is given by pM |X(m|x) :=
P{M = m |X = x}. The receiver follows the Bayes’ rule
to compute the posterior:

pX|M (x|m) =
pM |X(m|x)pX(x)∑

x′∈X pM |X(m|x′)pX(x′)
. (1)

Note that, since the message M is a random variable, the
value of the conditional density function pX|M (x|m) at a
given x ∈ X is itself a random variable.

A. Covert adversary

Consider the case where the adversary injects a message
M = m, but the estimator is unaware of this attack so it
mistakenly follows (1). It is clearly of interest to see whether

23rd International Symposium on Mathematical Theory of Networks and Systems
Hong Kong University of Science and Technology, Hong Kong, July 16-20, 2018

22



it is possible to ensure that the posterior of (1) matches a
desired1 posterior g(x). This implies m must satisfy

∀x ∈ X, pX|M (x|m) = g(x).

Establishing the existence of solutions to this set of |X| equa-
tions, and finding them, is a difficult problem. We therefore
relax the problem by only requiring pX|M (x|m) to take the
desired values in expectation. Suppose the adversary knows
the parameter value for a given realization is X = x, and
transmits stochastic messages M according to p̄M |X(m|x).

Problem 1: For a given g : X → [0, 1],
∑

x∈X g(x) = 1,
find a probability function p̄M |X : M×X→ [0, 1] such that

∀x, x′ ∈ X, EM{pX|M (x′|M) | X = x} = g(x′). (2)
Note that, in the above equation, x′ corresponds to a dummy
variable for evaluating g(x′), and x corresponds to the
realization of the random variable X . Problem 1 can be
relaxed further: instead of requiring (2) to hold for every
possible realization x ∈ X, we only require that it holds
after taking a further expectation over X . This yields

∀x′ ∈ X, EM,X{pX|M (x′|M)} = g(x′). (3)

B. Covert adversary with side information

It is often the case that the estimator has access to some
side information, e.g., its own measurements or measure-
ments from honest agents. A random variable N ∈ M
with conditional probability function pN |X(n|x) := P{N =
n |X = x} is used to show this side-channel informa-
tion. It is assumed that, conditioned on the realization of
X , messages M and N are statistically independent, i.e.,
P{M = m,N = n|X = x} = P{M = m|X = x}P{N =
n|X = x}. In this case, the update rule in (1) must be
adapted to

pX|M,N (x|m,n)

=
pN |X(n|x)pM |X(m|x)pX(x)∑

x′∈X pN |X(n|x′)pM |X(m|x′)pX(x′)
. (4)

As before, the adversary may follow the conditional prob-
ability function p̄M |X(m|x) to generate its messages (for
deceiving the receiver) while the receiver unknowingly fol-
lows (4). This leaves us with the following problem.

Problem 2: For a given g : X → [0, 1],
∑

x∈X g(x) = 1,
find a probability distribution p̄M |X : M × X → [0, 1] such
that

∀x, x′ ∈ X, EM,N{pX|M,N (x′|M,N) | X = x} = g(x′).

Similarly, this can be further relaxed to

∀x′ ∈ X, EM,N,X{pX|M,N (x′|m,n)} = g(x′).

C. Detected adversary

For the case where the receiver is aware of the adversary
and its malicious intentions, the problem formulation needs

1from the perspective of the adversary.

to be adapted as the receiver no longer update its belief based
on (1). The receiver however follows

pX|M (x|m) =
p̄M |X(m|x)pX(x)∑

x′∈X p̄M |X(m|x′)pX(x′)
. (5)

This is similar to the Bayesian persuasion approach studied
in [4]. We consider a similar question as in Problem 1,
however, (3) is calculated noting the receiver’s ability to
follow (5).

Definition 1: The pair (p̄M |X , pX|M ) constitutes an equi-
librium if it simultaneously satisfies ∀x′ ∈ X, ∀m′ ∈M,

EM{pX|M (x′|M)} = g(x′), (6a)

pX|M (x|m) =
p̄M |X(m|x)pX(x)∑

x′∈X p̄M |X(m|x′)pX(x′)
. (6b)

An interesting problem in this case is to establish the exis-
tence of the equilibrium, i.e., capture the family of functions
g(x) for which the equilibrium exists.

With these problem formulations at hand, we are now
ready to present the results of the paper.

III. MAIN RESULTS

The first result of the paper discusses the case where the
receiver is not aware of the presence of the adversary.

Proposition 1: In Problem 1 if the receiver is not aware of
the presence of the adversary, EM{pX|M (x′|M)|X = x} =
g(x′), ∀x, x′ ∈ X, can be ensured if and only if the following
set of linear equations in (p̄M |X(m|x))m∈M,x∈X admits a
non-negative solution:∑

m∈M
α(m,x′)p̄M |X(m|x) = g(x′), ∀x, x′ ∈ X, (7a)∑

m∈M
p̄M |X(m|x) = 1,∀x ∈ X, (7b)

where

α(m,x′) :=
pX(x′)pM |X(m|x′)∑

x′′∈X pM |X(m|x′′)pX(x′′)
. (8)

Proof: Note that

EM{pX|M (x′|M)|X = x}

=
∑
m∈M

pX|M (x′|m)P{M = m|X = x}

= pX(x′)
∑
m∈M

pM |X(m|x′)P{M = m|X = x}∑
x′′∈X pM |X(m|x′′)pX(x′′)

(9)

= pX(x′)
∑
m∈M

pM |X(m|x′)p̄M |X(m|x)∑
x′′∈X pM |X(m|x′′)pX(x′′)

=
∑
m∈M

α(m,x′)p̄M |X(m|x).

Therefore, if we want EM{pX|M (x′|M)|X = x} to be equal
to g(x′), the set of linear equations in (7a) must admit a
solution. The rest follows from that p̄M |X is a conditional
density function so it must sum to one.

Proposition 1 provides a constructive approach for check-
ing the existence of the messaging policy p̄M |X by the
adversary to make sure that in average the posterior matches
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the intended function g(x). In the next result, supp(·) is
used to denote the support set of the probability function of
a random variable.

Corollary 1: The set of linear equations in Proposition 1
admits a solution only if supp(g) ⊆ supp(pX).

Proof: From (9), it is evident that EM{pX|M (x′|M)} =
0 if pX(x′) = 0. Thus, a necessary condition for realizability
of g(x) is supp(g) ⊆ supp(pX).

Corollary 1 states the-rather-obvious result that it is not
possible to fool the Bayesian estimator to believe that an
event with zero probability has happened.

Conjecture 1: The set of linear equations in Proposition 1
admits a solution only if |M| ≥ |X|+ 1.

Conjecture 1 follows from that the number of the equations
in (7a) is equal to |X|(X + 1) while the number of the
unknowns is |X||M|.

Proposition 2: In Problem 1 if the receiver is not aware
of the presence of the adversary, EM{pX|M (x|M)} =
g(x),∀x ∈ X can be ensured if and only if the following
set of linear equations in (p̄m|x(m′|x′′))m′∈M,x′′∈X admits a
non-negative solution:∑
m∈M

∑
x′∈X

α(m,x, x′)p̄M |X(m′|x′) = g(x), ∀x ∈ X, (10a)∑
m∈M

p̄M |X(m|x) = 1,∀x ∈ X, (10b)

where

α(m,x, x′) :=
pM |X(m|x)pX(x′)pX(x)∑
x′′∈X pM |X(m|x′′)pX(x′′)

. (11)

Proof: The proof is similar to that of Proposition 1.
Now, we are ready to consider the case wide side-channel

information.
Proposition 3: In Problem 2 if the receiver

is not aware of the presence of the adversary,
EM,N{pX|M,N (x′|M,N)|X = x} = g(x′),∀x, x′ ∈ X
can be ensured if and only if the following set of linear
equations in (p̄M |X(m|x))m′∈M,x∈X admits a non-negative
solution:∑

m∈M
β(m,x, x′)p̄M |X(m|x) = g(x′), ∀x, x′ ∈ X, (12a)∑

m∈M
p̄M |X(m|x) = 1, ∀x ∈ X, (12b)

where

β(m,x, x′)=
∑
n∈M

pN |X(n|x′)pM |X(m|x′)pX(x′)pN |X(n|x)∑
x′′∈X pN |X(n|x′′)pM |X(m|x′′)pX(x′′)

.

(13)
Proof: Note that

EM,N{pX|M,N (x′|M,N)}

=
∑
m,n

pX|M,N (x|m,n)P{M = m,N = n|X = x}

=
∑
m,n

pN |X(n|x′)pM |X(m|x′)pX(x′)pN |X(n|x)p̄M |X(m|x)∑
x′′∈X pN |X(n|x′′)pM |X(m|x′′)pX(x′′)

.

The rest of the proof follows from the same linear reasoning
as in the proof of Proposition 2.

Proposition 3 shows that the addition of the side-channel
information does not add to the complexity of crafting the
attack. This is intuitively because the receiver can first update
its prior based on the side channel information and then
processes the adversary’s measurement in which case attack
is simply done on the posterior of the estimator based on the
side-channel information.

Proposition 4: An equilibrium in the sense of Definition 1
if and only if g(x) = pX(x),∀x ∈ X.

Proof: It can be shown that

EM{pX|M (x|M)} =
∑
m∈M

[
p̄M |X(m|x)pX(x)∑

x′∈X p̄M |X(m|x′)pX(x′)

×
∑
x′′∈X

p̄M |X(m|x′′)p(x′′)
]

=
∑
m∈M

pX(x)p̄M |X(m|x)

= pX(x)

[ ∑
m∈M

p̄M |X(m|x)

]
= pX(x).

This concludes the proof.
Proposition 4 is a negative result (from the perspective of

the adversary) illustrating that fooling a cautious Bayesian
estimator is a difficult task in average.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we analysed the security of the networked
Bayesian source localization algorithms. In fact, fundamental
limits in the performance of an adversary for manipulating
the posterior of the Bayesian estimator were provided. It was
shown that if the receiver is aware of the adversary (i.e., if it
knows that the system is under attack) changing the posterior
of the Bayesian estimator in average. This observation points
to the fact that the adversary cannot fake the location of
the source to a known place. However, it might be able to
obfuscate the location of the source at random by maximizing
the variance of the posterior. This is an important problem
that should be studied in the future.
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