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I. INTRODUCTION

Securing cyber-physical systems (CPS) is a problem of
growing importance due to the widespread applications of
such systems in critical infrastructures, e.g., smart grid,
intelligent transportation and health monitoring system [1].
In this context, it is crucial to ensure the performance of state
estimation, an indispensable aspect of CPS, in the presence
of malicious attacks. With this motivation, we focus on the
problem of securely estimating the state of a linear dynamical
system from a set of noisy and maliciously corrupted sensor
measurements in this work.

Several recent works focus on designing detection mech-
anisms or building attack-resilient estimators for a specific
attack strategy [2]–[4]. However, it is difficult for a system
designer to determine the specific attack type beforehand in
many scenarios. Hence, the development of attack detection
and secure estimation schemes which are applicable to
different attack scenarios is necessary. In [5], the problem of
attack detection and identification in CPS was investigated in
system-theoretic and graph-theoretic approaches. In [6], the
maximum number of tolerable attacks that allow accurate
reconstruction of the system state was characterized. The
above result was further extended to noisy systems in [7].
Since localizing the compromised sensors is intrinsically a
combinatorial problem, a satisfiability modulo theory based
algorithm was proposed in [8] and its scalability, soundness
and completeness were analyzed. In remote estimation sce-
nario, transfer entropy based causality countermeasures for
integrity attacks were proposed in [9] and convex optimiza-
tion based resilient estimators were investigated in [10].

To achieve the joint objective of attack localization and
secure state estimation, we propose a clustering-based de-
tection algorithm in this work. It is able to cluster the
local state estimates autonomously and provide beliefs for
different sensors, based on which measurements can be fused
accordingly. When a subset of the sensors are under attack,
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Fig. 1. System Block Diagram.

we analyze the remote estimation error covariance for the
proposed clustering-based detection algorithm and evaluate
the performance of the proposed algorithm through the
average belief. Moreover, the effectiveness of the proposed
algorithm is verified under different attack scenarios.

II. PROBLEM FORMULATION

A. Process Model

Consider a networked system consisting of N sensors and
one remote estimator as shown in Fig. 1. Each sensor i ∈
N , {1, 2, . . . , N} measures an output of a linear time-
invariant process:

xk+1 = Axk + wk,

yk,i = Cixk + vk,i,

where k ∈ N is the time index, xk ∈ Rn is the sys-
tem state, and yk,i ∈ Rmi is the measurement obtained
sensor i. Both wk ∈ Rn and vk,i ∈ Rmi are zero-mean
i.i.d. Gaussian noises with E[wkw

′
l] = δklQ (Q ≥ 0),

E[vk,iv
′
l,j ] = δijδklRi (Ri > 0), E[wkv

′
l,i] = 0, ∀k, l ∈ N,

i, j = 1, 2, . . . , N . The initial state x0 is zero-mean Gaussian
with covariance matrix Π0 > 0 and independent of wk and
vk,i for all k ≥ 0. The pairs (A,Ci) are detectable and
(A,
√
Q) is controllable.

B. Remote Estimator

At time instant k, each sensor transmits its measurement
to a remote estimator. By defining

yk ,
[
y′k,1 y′k,2 . . . y′k,N

]′
,

vk ,
[
v′k,1 v′k,2 . . . v′k,N

]′
,

C ,
[
C ′1 C ′2 . . . C ′N

]′
,

R , Diag{R1, R2, . . . , RN},

the overall measurement can be represented as

yk = Cxk + vk.
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To estimate the system state based on the received measure-
ments, a Kalman filter is adopted at the remote estimator:

x̂−k = Ax̂k−1,

P−k = APk−1A
′ +Q,

Kk = P−k C
′(CP−k C

′ +R)−1,

x̂k = x̂−k +Kk(yk − Cx̂−k ),

Pk = (I −KkC)P−k ,

where x̂−k and x̂k are the a priori and the a posteriori
minimum mean squared error (MMSE) estimates of the
state xk, P−k and Pk the corresponding estimation error
covariances. The recursion starts from x̂0 = 0 and P0 =
Π0 > 0. An alternative form for the measurement update is

x̂k = x̂−k + PkC
′R−1(yk − Cx̂−k ),

(Pk)−1 = (P−k−1)−1 + C ′R−1C,

which is known as the information-form Kalman filter.
Similarly, the local Kalman filter for sensor i, i = 1, 2 . . . , N
can also be obtained.

To facilitate the subsequent discussion, we define the
Lyapunov and Riccati operators h, gi, g : Sn++ → Sn++ as:

h(X) , AXA′ +Q,

gi(X) , X −XC ′i(CiXC ′i +Ri)
−1CiX,

g(X) , X −XC(CXC ′ +R)−1CX.

It is well known that the Kalman filter converges from any
initial condition exponentially fast when (A,Ci) is detectable
and (A,

√
Q) is controllable [11]. We denote the steady-state

values for local and centralized Kalman filter as

Pi , lim
k→+∞

Pk,i, P
−
i , lim

k→+∞
P−k,i,

P , lim
k→+∞

Pk, P− , lim
k→+∞

P−k ,

where Pi, P−i , P and P− are the unique positive definite
solution of gi ◦ h(X) = X , h ◦ gi(X) = X , g ◦ h(X) = X ,
and h◦g(X) = X , respectively. Without of loss of generality,
we assume that the system starts from the steady state with
Pi,0 = Pi and P0 = P , which results in fixed-gain local and
centralized Kalman filters, i.e.,

Ki = PiC
′
iR
−1
i = P−i C

′
i(CiP

−
i C

′
i +Ri)

−1,

K = PC ′R−1 = P−C ′(CP−C ′ +R)−1.

C. False-data Detectors

To ensure the data integrity in CPS, false-data detectors
are usually adopted to monitor system behavior and detect
the existence of potential malicious attacks. Note that for
local Kalman filter, the innovation zk,i = yk,i−Cix̂−k,i has a
steady-state Gaussian distribution N (0, CiP

−
i C

′
i + Ri) and

E[zk,iz
′
l,i] = 0 for all k 6= l [11]. For centralized Kalman

filter, the innovation zk = yk − Cx̂−k has a steady-state
Gaussian distribution N (0, CP−C ′ + R) and E[zkz

′
l] = 0

for all k 6= l. Hence, the statistical characteristics (mean and
variance) of the innovation sequence are commonly used

to diagnose the system anomalies [12]. Based on different
information set, the following distributed and centralized χ2

false-data detectors are considered.
In the distributed case, the false-data detector diagnoses

the existence of cyber attacks by parallelly checking the sum
of the normalized variance of the innovation sequence for
every single sensor, i.e., at time k, the detection criterion of
sensor i, i = 1, 2, . . . , N follows the hypothesis test:

gk,i =

k∑
j=k−Ji+1

z′j,i(CiP
−
i C

′
i +Ri)

−1zj,i
H0

≶
H1

δi,

where Ji is the detection window size of sensor i, δi is the
threshold of sensor i. The null hypothesis H0 means that the
system is operating normally, while the alternative hypothesis
H1 means that the system is under attack. Note that gk,i
satisfies the χ2 distribution with mJ degrees of freedom.
If gk,i exceeds the threshold δi, the detector will trigger an
alarm and the measurement of sensor i will be dropped.

In the centralized case, the false-data detector checks
the system anomalies based on the innovation calculated
by centralized Kalman filter, i.e., at time k, the detection
criterion follows the hypothesis test:

gk =

k∑
j=k−J+1

z′j(CP
−C ′ +R)−1zj

H0

≶
H1

δ,

where gk is χ2 distributed with mNJ degrees of freedom.
When gk exceeds the threshold δ, the detector will trigger
an alarm and all the measurements will be dropped.

D. Attack Model

Suppose that there exists a malicious attacker who is able
to modify the measurement data. In practice, an attacker can
launch such an attack in different fashions. For example,
it can change the physical environment to mislead the
sensors, or hack the on-board sensor chip, or manipulate the
data packet during the sensor-to-estimator transmission. The
ability of an attacker in the real world is usually limited,
so we assume that it can only compromise a subset of the
sensors. The index set of corrupted sensors is assumed to be
time invariant. Without loss of generality, we also assume
that the attack starts from time k = 1.

E. Problem of Interest

For the system described in the previous subsections,
if no alarm is triggered at both the distributed and the
centralized χ2 detectors, the measurement data are believed
to be reliable and fused at the remote estimator. If alarms are
triggered at the distributed χ2 detector, we simply remove
those corrupted measurements and check the remaining data
through the centralized χ2 detector. If no alarm is triggered
at the centralized χ2 detector, the remaining data will be
fused at the remote estimator. Otherwise, the remaining data
will be discarded and only a time update is performed at
the remote side to estimate system state. In this case, for
those carefully designed attacks which are able to bypass
the distributed χ2 detector but fail to remain stealthy to
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the centralized χ2 detector, e.g., reply attack [2], false-
data injection attack [13] and innovation-based deception
attack [14], the alarm triggered in the centralized χ2 detector
may result in a large performance degradation since the loss
of uncontaminated information. To address this issue, it is
necessary to develop an effective detection mechanism which
is able to localize the compromised sensors and applicable
to different attack scenarios.

III. METHODOLOGY

As discussed before, our interest lies in handling situations
where the malicious attacker is able to deliberately design
the corrupted data to bypass the distributed χ2 detector but
the centralized χ2 detector fails to localize the compromised
sensors. Inspired by the clustering algorithm used in ma-
chine learning, we propose a Gaussian-mixture-model-based
detection algorithm for attack localization and secure state
estimation.

Gaussian mixture model is a probabilistic model for
representing normally distributed subpopulations within an
overall population. It is parameterized by two types of values,
the mixture component weights and the component means
and covariances. For a Gaussian mixture model with Q
components, the q-th component Gq has mean µ(q) and
covariance Σ(q). The mixture component weights are defined
as π(q) for component Gq , with the constraint

∑Q
q=1 π

(q) =
1. In this case, the mixture density can be represented as

p(x) =

Q∑
q=1

p(x|Gq) Pr(Gq)

=

Q∑
q=1

π(q)f(x;µ(q),Σ(q)),

where f(x;µ,Σ) , 1√
(2π)n|Σ|

exp(− 1
2 (x− µ)′Σ−1(x− µ))

denotes the probability density function for Gaussian random
variables.

In our problem, the sensors are either uncorrupted or
compromised, which leads to a 2-component mixture. It can
be observed that if sensor i is uncorrupted, its local state es-
timate x̂k,i is Gaussian distributed with fixed covariance Pi,
i.e., p(x̂k,i|G1) ∼ N (µ

(1)
k , Pi). If sensor i is compromised by

the attacker, then x̂k,i may not have a Gaussian distribution,
so we use the first and second moments to approximate
its distribution, i.e., p(x̂k,i|G2) ∼ N (µ

(2)
k ,Σ

(2)
k ). Since we

consider a dynamic system, the time index k is added.
Consequently, the mixture density for local state estimate
x̂k,i is obtained as

p(x̂k,i) =

2∑
q=1

p(x|Gq) Pr(Gq)

= π
(1)
k f(x̂k,i;µ

(1)
k , Pi) + π

(2)
k f(x̂k,i;µ

(2)
k ,Σ

(2)
k ).

At each time k, we adopt expectation-maximization (EM)
algorithm [15] to find maximum likelihood estimates for
the parameter Φk = {π(q)

k , µ
(q)
k ,Σ

(2)
k }2q=1 using the data

Xk = {x̂k,i}Ni=1 and simultaneously fuse the measurement
data with different weights. The log likelihood is given as

L(Φk;Xk)

=

N∑
i=1

log
(
π

(1)
k f(x̂k,i;µ

(1)
k , Pi) + π

(2)
k f(x̂k,i;µ

(2)
k ,Σ

(2)
k )
)
.

In general, Gaussian mixture model does not require
knowing which subpopulation a data point belongs to, al-
lowing the model to learn the subpopulations automatically,
which constitutes a form of unsupervised learning [16].
Hence, the proposed detection algorithm is able to divide
the sensors into two categories autonomously and weight the
measurements from different sensors with different beliefs,
leading to a satisfactory estimation performance even in the
presence of attacks.
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