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Abstract— We address the problem of attack detection
and attack correction for multi-output discrete-time lin-
ear time-invariant systems under sensor attacks. More
specifically, we focus on the situation where adversarial
attack signals are added to some of the systems output
signals. A ‘security index’ is defined to characterize the
vulnerability of a system against such sensor attacks and
methods are given to calculate this index for various
system representations. Algorithms are presented to de-
tect and correct for sensor attacks on a noise-free linear
system.
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I. INTRODUCTION

In today’s society, the physical infrastructures
in support of critical services can be described
as cyber-physical systems. The end-to-end service
can therefore be affected by, for example, loss
of functionality of the physical assets or mali-
cious attack. In this presentation, the particular
attack scenario where some sensor signals may
be corrupted by additive malicious attack signals.
In this case, the attack signals may be injected
based on the knowledge of the targeted system and
thus it no longer suffices to treat these external
signals as mere disturbances or noise. In fact,
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such attack signals can be used to control the
behavior of a system to achieve the purpose of
the attacker. For instance, it is conceivable that a
modern autonomous vehicle may be hijacked using
sensor spoofing [8].

In this presentation, we consider a discrete-time
linear time-invariant (LTI) system whose outputs
may be compromised by additive attack signals.
To assist in the analysis, the notion of the ‘se-
curity index’ of a system is introduced, which is
a quantitative representation-free measure of the
vulnerability of a system to sensor attacks. We
will show how it relates to the detectability and
correctability of attack signals.

Unlike much of the work in this area, the main
tool used in this presentation is a kernel representa-
tion (see for example [2, Ch2.5]) and behavioral
approach rather than a state space representation
for the following reasons: 1. Many well-established
theorems based on kernel representation can be
applied when we are discussing a system using
a behavioral approach. 2. Every system in kernel
representation can be brought into state space form
and every observable system in state space can
be transformed into kernel representation. 3. The
implementation of the system in kernel represen-
tation can be done straightforwardly using shift
operators.

The focus of our presentation is on the develop-
ment of conceptual approaches to attack detection
and correction. In this presentation, we restrict
ourself to a noise free environment. Our methods
then serve as a starting point for further research on
the noisy case. We consider only sensor attacks to
enable the readers to understand the essence of the
proposed methods. We also assume that the inputs
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of the system are known and due to the linearity
of the system, we can set it to be zero signals for
the purpose of our analysis.

II. PROBLEM STATEMENT

We consider an LTI system Σ in its kernel
representation as follows

Σ : R(σ)y = 0, (1)

where y : Z+ → RN is the sensor output signal of
the system Σ and R(ξ) is an N×N real polynomial
matrix of full rank, meaning that the system’s
behavior is autonomous with no free variables (see
for example [2, Ch3.1]). σ represents the forward
shift operator, i.e., σy(t) = y(t+ 1).

Definition 2.1: The behavior of the system Σ is
defined as the set given by

B = {y : Z+ → RN | R(σ)y = 0}. (2)
Now consider additive attack signal η : Z+ →

RN and η ∈ attack set A. A corrupted received
signal is r = y + η.

Definition 2.2: The behavior of the corrupted
system ΣA is defined as the set of possible received
signals given by

BA = {r : Z+ → RN | r = y+η, where y ∈ B, η ∈ A}.
(3)

The detectability and correctability of a system are
defined as follows.

Definition 2.3 (Attack detectability): A non-
zero attack signal η ∈ A is detectable if η /∈ B.

Definition 2.4 (Attack correctability): A non-
zero attack signal η ∈ A is correctable if for all
η′ 6= η, the following is satisfied

η′ ∈ A ⇒ η − η′ /∈ B. (4)
In this presentation we will first recall results
from [1], [3] on the feasibility of attack detec-
tion/correction and then propose new methods that
are guaranteed to achieve attack correction under
certain assumptions about the attack set A. Full
proofs on these new results are omitted here but
can be found in our submitted work [9].

III. SECURITY INDEX

We recall conditions to achieve attack de-
tectability and correctability via the ‘security in-
dex’ δ(Σ) of the system Σ as defined in [1], [3].

Definition 3.1: The security index of the system
Σ is defined as

δ(Σ) := min
06=y∈B

‖y‖, (5)

here, we use ‖y‖ to denote the weight (i.e., number
of non-zero components) of signal y.

Note that δ(Σ) is an integer between 1 and N
and note the analogy of Definition 3.1 with the
concept of ‘minimum distance’ in coding theory
(see for example [10, Ch7.2-2]).

Theorem 3.1: (Attack detection capability of
the system) Let A = {η : Z+ → RN | ‖η‖ <
δ(Σ) and η 6= 0}. All attack signals η ∈ A are
detectable.

Theorem 3.2: (Attack correction capability of
the system) Let A = {η : Z+ → RN | ‖η‖ <
δ(Σ)/2 and η 6= 0}. All attack signals η ∈ A are
correctable.

Remark 3.3: We call a system Σ with N outputs
maximally secure if its security index δ(Σ) = N .

It follows from the above theorems that the
value of δ(Σ) can be viewed as the minimum
number of sensors that have to be attacked in order
to implement an undetectable attack. Similarly,
the value of δ(Σ)/2 corresponds to the minimum
number of sensors that have to be attacked in order
to implement an uncorrectable attack. Thus the
system’s security index relates to the feasibility of
attack detection/correction.

To calculate the security index of a system Σ, we
need the following notation, where J is assumed
to be a subset of {1, . . . , N}.

Notation 3.1: Define RJ (ξ) as an N × ‖J ‖
matrix that consists of the i-th columns of R(ξ)
where i ∈ J .

Next we recall the following theorem which
provides a way to calculate the security index of
a system.

Theorem 3.4 (Security index calculation):
Consider a system Σ whose behavior B is non-
zero and given by (1), where R(ξ) has full rank.
Then

δ(Σ) = L+ 1, (6)

where L is the largest integer such that for any
subset J ⊆ {1, . . . , N} of cardinality L, the N×L
matrix RJ (ξ) is left unimodular.
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IV. ATTACK DETECTION AND CORRECTION
ALGORITHMS

For attack detection, we recall the following
algorithm from [1], [3].

Algorithm 1 Attack detection
1: procedure (R(ξ), r, η)
. Given R(ξ) and r, detect whether η is the
zero signal.

2: Calculate s = R(σ)r.
3: if s = 0 then decide no attack, i.e., η = 0.
4: else decide attack occurred, i.e., η 6= 0.
5: end if
6: end procedure

Before we discuss attack correction algorithms,
the following theorem on equivalent kernel repre-
sentations for B is presented.

Theorem 4.1: (e.g. [4, Theorem 3.9]) Consider
two systems Σ and Σ′ whose behaviors B and
B′ are given by B = {y|R(σ)y = 0} and B′ =
{y′|R′(σ)y′ = 0}, respectively. Assume that R(ξ)
and R′(ξ) are square matrices of the same size,
then B = B′ if and only if R(ξ) and R′

(ξ) are left
unimodularly equivalent.

Remark 4.2: Theorem 4.1 indicates that chang-
ing a kernel representation of B via left multipli-
cation by a unimodular matrix does not change the
behavior B.

The discussion of the attack correction algo-
rithm will be divided into two cases: first for
systems that are maximally secure and second for
general systems that are not necessarily maximally
secure. For both cases, we first single out a canon-
ical form representation which is then used to
provide the algorithm for attack correction. Proofs
can be found in our submitted work [9]. In the
next theorem deg a(ξ) denotes the degree of the
polynomial a(ξ).

Theorem 4.3: (Kronecker-Hermite canonical
kernel representation of R(ξ)—maximally se-
cure case) [5, Theorem 2.40], [7, Theorem 7.5],
[6] Let R(ξ) be an N × N polynomial matrix
whose determinant is non-zero. Assume that all
N × (N −1) submatrices of R(ξ) are left unimod-
ular. Then there exists a unimodular matrix U(ξ)

such that

U(ξ)R(ξ) =

 IN−1

−c1(ξ)
−c2(ξ)

...
−cN−1(ξ)

0 . . . 0 a(ξ)

 ,
(7)

where cj(ξ) is coprime with a(ξ) and deg cj(ξ) <
deg a(ξ) for all j ∈ {1, ..., N − 1}.

Notation 4.1: Because of the coprimeness of
cj(ξ) and a(ξ) there exist polynomials pj(ξ) and
qj(ξ) satisfying[
pj(ξ) qj(ξ)

] [cj(ξ)
a(ξ)

]
= 1,∀j ∈ {1, ..., N − 1}.

(8)
Notation 4.2: Maj{v1, v2, . . . , vL}, (majority

vote) denotes the most frequently occurring signal
in the set of vj’s.
Given Theorem 4.3, without loss of generality,
we assume the polynomial matrix R(ξ) for a
maximally secure system is in the form of (7).
Algorithm 2 presents the attack correction method
for systems that are maximally secure. We can
prove that ŷ = y if ‖η‖ < δ(Σ)/2, see[9].

Algorithm 2 Attack correction for a maximally
secure system given by (7)

1: procedure (a(ξ), c1(ξ), . . . , cN−1(ξ), r, ŷ)
. Given a(ξ), cj(ξ)’s and r, compute ŷ.

2: Calculate

ŷN = Maj{p1(σ)r1, . . . , pN−1(σ)rN−1, rN},
(9)

where pj(ξ) is defined as in (8).
3: ŷj = cj(σ)ŷN for j = 1, 2, . . . , N − 1.
4: return ŷ =

[
ŷ1 ŷ2 . . . ŷN

]
.

5: end procedure

Theorem 4.4: (Kronecker-Hermite canonical
kernel representation of R(ξ)—general case)
Let R(ξ) be an N ×N polynomial matrix whose
determinant is nonzero. Let L be the largest integer
such that, for any subset J ⊆ {1, . . . , N} of
cardinality L, the N × L matrix RJ (ξ) is left
unimodular. Then there exists a unimodular matrix
U(ξ) such that

U(ξ)R(ξ) =

[
IL −M1(ξ)

0 . . . 0 D(ξ)

]
, (10)
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where D(ξ) is an upper triangular matrix and the
degree of the diagonal entities of D(ξ), denoted
as deg dii(ξ) for i ∈ {1, ..., N − L}, is strictly the
highest within the corresponding column of (10).Iδ(Σ)−1 0

0 IN−δ(Σ)+1

0 0

 y =

 M1(σ)
IN−δ(Σ)+1

D(σ)

 `, (11)

where the signal ` is an auxiliary signal that can
be interpreted as a ‘state signal’ that drives the
system’s behavior. In the representation (11) the
signal ` simply coincides with the last m = N −
δ(Σ)+1 components of y. More generally, we have[

IN
0

]
y =

[
M(σ)
D(σ)

]
`, (12)

where ` : Z+ → Rm.
Theorem 4.5: Consider a system Σ whose be-

havior B is nonzero and given by (12). Then

δ(Σ) = N + 1− L̃, (13)

where L̃ is the smallest integer such that for any
subset J ⊆ {1, . . . , N} of cardinality L̃, the (L̃+

m)×m matrix
[
MJ (ξ)
D(ξ)

]
is left unimodular.

Notation 4.3: Let J be a subset of {1, . . . , N}
of cardinality N + 1 − δ(Σ). Suppose that the

matrix
[
MJ (ξ)
D(ξ)

]
is left unimodular. Then there

exist polynomial matrices PJ (ξ) and QJ (ξ) such
that[

PJ (ξ) QJ (ξ)
] [MJ (ξ)

D(ξ)

]
= IN+1−δ(Σ). (14)

Algorithm 3 presents the attack correction
method for general systems (not necessarily max-
imally secure). We can prove that ŷ = y if ‖η‖ <
δ(Σ)/2, see [9]. Note that polynomial matrices
PJ (ξ)s in Algorithm 3 and pj(ξ)s in Algorithm 2
can be considered as state observers that provide
accurate estimations of the state values of the
system Σ.

V. CONCLUSIONS
In this presentation, we propose attack cor-

rection methods for zero input discrete-time LTI
systems in the noise-free case. The purpose of
this presentation is to provide a proof of concept
around the application of ideas from coding theory
and representations of system behavior to handle

Algorithm 3 Attack correction for general system
given by (12)

1: procedure (M(ξ), D(ξ), δ(Σ), r, ŷ)
. Given M(ξ), D(ξ), δ(Σ) and r, compute ŷ.

2: Calculate

ˆ̀= Maj{PJ (σ)rJ }, (15)

where the majority vote is taken over all
subsets J of cardinality N + 1 − δ(Σ) and
PJ (ξ) is defined as in (14).

3: ŷ = M(σ)ˆ̀.
4: return ŷ.
5: end procedure

attacks on LTI systems. We use the notion of
”system security index” from earlier work which
quantifies the vulnerability of the system against
sensor attacks. We propose attack correction meth-
ods that exploit the outputs’ redundancy as well as
the known dynamics of the system.

REFERENCES

[1] M. Chong and M. Kuijper, Characterising the vulnerability
of linear control system under sensor attack using a system’s
security index. In Proc. IEEE 55th Conf. on Decision and
Control, Las Vegas, 2016, pp. 5906-5911.

[2] J. Polderman and J. Willems, Introduction to mathematical
systems theory: a behavioral approach, New York, USA:
Springer, 1997, vol. 26.

[3] M. Chong and M. Kuijiper, Vulnerability of linear systems
against sensor attacks - a system’s security index. In Proc.
22nd International Symposium on Mathematical Theory of
Networks and Systems, Minneapolis, USA, 2016.

[4] M. Kuijper. First-Order Representation of Linear Systems.
Systems and Control: Foundations and Applications. Boston,
USA: Birkhäuser, 1994.
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