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Abstract— Hyperbolic polynomials are multivariate
generalizations of characteristic polynomials of real sym-
metric matrices. Hyperbolic programming is the problem
of computing the infimum of a linear function when
restricted to the hyperbolicity cone of a hyperbolic poly-
nomial, a generalization of semidefinite programming.
In the talk I will discuss an approach based on symbolic
computation, relying on the multiplicity structure of the
algebraic boundary of the cone, without the assumption
of determinantal representability of the given polynomial.
This allows us to design exact algorithms able to certify
the multiplicity of the solution and the optimal value
of the linear function. This is joint work with Daniel
Plaumann, University of Dortmund.

In the rest of the talk, I will discuss a work in progress,
joint with Rainer Sinn, FU Berlin.

Semidefinite programming (SDP) represents a very
important class of convex optimization problems for
which approximate solutions can be computed through
a variety of numerical algorithms, the most efficient
of which is primal-dual interior point methods. Re-
cently, exact algorithms for semidefinite programming
have been developed in [9]. The strategy is based in
constructing lifting of low-rank matrix varieties.

While symbolic algorithms obviously have a much
higher complexity than numerical ones, finding ex-
act solutions has many benefits, especially regarding
certification of information about the solution. The
important information for SDP are the rank of the
optimizer, that can be determined exactly by the al-
gorithm in [9]. In the work [15], an algorithm for
solving SDP programs with rank constrained has been
obtained: this is a non-convex optimization problem
that models, for instance, the computation of sums-of-
squares certificates of low length. In this paper, joint
with D. Plaumann, we consider analogous algorithmic
questions in the more general framework of hyperbolic
programming.
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A real homogeneous polynomial f in x =
(x1, . . . , xn) is called hyperbolic with respect to a
direction e ∈ Rn if f(e) 6= 0 and if f(te − a) ∈ R[t]
has only real roots for every a ∈ Rn. The general
determinant of symmetric matrices has this property
with respect to the unit matrix e = Id, since det(tId −
A) is the classical characteristic polynomial of the real
symmetric matrix A.

Hyperbolic polynomials can therefore be seen as
generalized characteristic polynomials. If f is hyper-
bolic with respect to e, the hypersurface defined by f
bounds a convex cone containing e, the hyperbolicity
cone, generalizing the cone of positive semidefinite
matrices in case of the determinant. The zeros of
f(te − a) can be regarded as generalized eigenvalues
of a ∈ Rn, and the multiplicity of the root t = 0 of
f(te− a) as the corank of a. A hyperbolic program is
the convex optimization problem asking to minimize
a linear function over the hyperbolicity cone of a
hyperbolic polynomial.

Such cones have non-empty interior by construction
(the interior will indeed contain the point e). Denote
by Sd(R) the set of d × d real symmetric matrices.
Regular semidefinite programs (in which the feasible
set has non-empty interior) correspond to the case
in which f is the restriction of the determinant map
det : Sd(R) → R to a linear subspace V ⊂ Sd(R)
containing a positive definite matrix. More precisely,
for such V , the polynomial f = det

∣∣
V

is hyper-
bolic, and its hyperbolicity cone is the spectrahedron
V ∩ S+

d (R) = {M ∈ V : M � 0}. If V does not
contain positive definite matrices, V ∩ S+

d (R) is still a
spectrahedron, but f = det

∣∣
V

is not hyperbolic.
Moreover, not every hyperbolic polynomial can be

represented in this way (in fact, the set of representable
polynomials is, in general, of strictly smaller dimen-
sion) which motivates the development of techniques
that are independent of the determinantal representabil-
ity of f . Hyperbolic programming can be solved nu-
merically with interior point methods much like SDP
[4], [8], [16].

One of the major challenges in hyperbolic program-
ming, when compared to SDP, is the lack of an explicit
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duality theory, while SDP duality is always heavily ex-
ploited. The methods in [9] rely on the good properties
of determinantal varieties, which provide an explicit
non-singular lifting of the variety of symmetric matri-
ces of bounded rank in a given subspace. The same
is not available for hyperbolic programming. However,
hyperbolicity of a real polynomial still imposes some
strong conditions on the structure of the real part of the
singular locus of the hypersurface.

Given a polynomial f , hyperbolic with respect to
e ∈ Rn, let Λ+ be the hyperbolicity cone of f , and let
Γm ⊂ Rn denote the set of points of multiplicity at least
m. Furthermore, let Le = {x ∈ Rn : eTx = 1} be the
affine space orthogonal to the direction e (containing
e

‖e‖2 ) and write Λ′
+ = Λ+∩Le and Γ′

m = Γm∩Le. We
show that if m equals the maximal multiplicity on Λ′

+,
then Λ′

+ contains one of the real connected components
of Γ′

m, proving that Γ′
m∩Λ+ is the union of some com-

ponents of Γ′
m. Thus a point of maximal multiplicity

(analogous to the minimal rank in SDP) can be found
by sampling the connected components of Γ′

m. Since
this is an algebraic set (rather than just semialgebraic),
this reduces to a standard problem in computational
real algebraic geometry. Furthermore, we show that the
more general convex hyperbolic programming problem
over Λ′

+ is equivalent to computing local minimizers
over the sets Γ′

m of the same linear function. This can
be carried out in practice using Lagrange multipliers,
provided that the corresponding set of critical points has
complex dimension 0. We use these results to design an
exact algorithm for hyperbolic programming. Applying
this to explicit examples yields interesting results that
will be discussed during the talk.

In the rest of the talk, I will describe a recent
work in progress with Rainer Sinn, FU Berlin. When
passing from linear to semidefinite and hyperbolic
programming, many nice properties of the optimization
problem are preserved. By the way, the nonlinearity
can often introduce degenerate properties such as weak
infeasibility. In our joint project, we deal with the
problem of characterizing weak infeasibility in the case
of hyperbolic programming and of more general conic
programs.
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