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Abstract— This note studies the disturbance amplification
in an interconnected heterogeneous mass chain in which one
end is connected to a movable point. Each interconnection
is represented by a general mechanical impedance function.
The problem arises in the design of multi-storey buildings
subjected to earthquake disturbances, or bidirectional control
of vehicle platoons. Recurrence relations with respect to the
number of masses are derived for the scalar transfer functions
from the movable point displacement to a given intermass
displacement. In particular, each relation takes the form of
a Möbius transformation.

I. INTRODUCTION

This note derives recurrence relations for the transfer
function from a movable point displacement x0 to a given
intermass displacement xi−1−xi in the heterogeneous mass
chain of Fig. 1. More specifically, when a new mass is
added to the chain, the transfer function in this new system
is described by a function of that in the previous system.
In particular, it is shown that each relation is in the form
of a Möbius transformation. That is, adding new masses
(and hence new interconnections) corresponds to repeatedly
applying Möbius transformations.

In the case of homogeneous mass chain (identical masses
and interconnections), [3] derived conditions on the inter-
connection for the stability and the uniform boundedness of
the H∞-norm of these transfer functions regardless of the
number of masses. This means that masses can be freely
added or taken out from the chain, while the stability and
the H∞-norm bound are still guaranteed. Conditions on the
interconnection for tighter analytic bounds on the H∞-norm
of the first intermass displacement are given by [2]. These
results are established by exploiting Möbius transformation
formulations. The similar formulations provided in this note
may be useful to investigate the effect of heterogeneity in
the mass chain on these results.

Notation

C and Z+ denote the set of complex numbers and positive
integers, respectively. The composition of two functions is
denoted by f ◦ g(x) = f(g(x)).

II. PROBLEM FORMULATION

Consider a chain of n masses mj connected by a me-
chanical impedance (the ratio of velocity to force) Zj(s),
j = 1, 2, . . . , n, as shown in Fig. 1. We assume that mj 6= 0
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Fig. 1. Chain of n masses connected by mechanical impedances.

and Zj(s) 6≡ 0, ∀j. Each interconnection provides an equal
and opposite force on each mass and is assumed here to
have negligible mass. The system is excited by a movable
point x0(t) and the displacement of the ith mass from the
left is denoted by xi(t), i = 1, 2, . . . , n. Assume that the
initial displacements of the movable point and the mass are
all zero.

Note that the index of the displacements of masses start
from the left while those of masses and impedances start
from the right. This notation becomes natural when recur-
rence relations are derived. To avoid confusion, we use index
i from the left in the mass chain and j from the right. Hence,
j = n− i+ 1.

The equations of motion in the Laplace transformed do-
main are given by

mn−i+1s
2x̂i = sZ−1n−i+1 (x̂i−1 − x̂i) + sZ−1n−i (x̂i+1 − x̂i)

for i = 1, 2, . . . , n− 1,

m1s
2x̂n = sZ−11 (x̂n−1 − x̂n)

where ˆ denotes the Laplace transform. Let hj(s) :=
sZj(s)mj , αj(s) := Zj+1(s)/Zj(s) and α0 = 0. Then we
obtain

x̂1
x̂2
...
x̂n

 =


L11 −αn−1 0

−1 L22
. . .

. . . . . . −α1

0 −1 Lnn


−1

1
0
...
0

 x̂0 (1)

=: L−1e1x0

where Lii = hn−i+1 + αn−i + 1.

Let us consider the determinant of the matrix L, dn. It
is obvious that d1(s) = h1(s) + 1 for n = 1. Suppose also
d−1 = 1 and d0 = 1. Using the Laplace expansion, we find
that

dn(s) = (hn(s) + αn−1(s) + 1) dn−1(s)−αn−1(s)dn−2(s)
(2)

for n ∈ Z+. Since L−1 = adjL/detL, (1) can be written
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as 
x̂1
x̂2
...
x̂n

 =
1

dn

dn−1 ∗ . . . ∗
...

...
...

d0 ∗ . . . ∗



1
0
...
0

 x̂0

=
1

dn

dn−1...
d0

 x̂0.

Hence, the transfer functions from the disturbance x0 to the
ith intermass displacement xi−1 − xi in the heterogeneous
mass chain of Fig. 1 are given by

F (i)
n (s) :=

dn−i+1(s)− dn−i(s)
dn(s)

(3)

for i = 1, . . . , n.

III. INTERMASS DISPLACEMENTS

A. Recurrence relations in mass chains

It is shown in this section that the transfer functions F (i)
n

in (3) are represented as compositions of Möbius transfor-
mations. For this purpose, let us first define the following
recursion with respect to i:

d(i)n = (hn + αn−1 + 1)d
(i−1)
n−1 − αn−1d

(i−2)
n−2

d(−1)n = d(0)n = 1.
(4)

Note that d(n)n is equivalent to dn defined by (2), and will
be denoted as dn in the sequel.

Theorem 1: Let F (i)
n be defined by (3). For any i =

1, 2, . . . , the sequence (F
(i)
n )∞n=i satisfies the following re-

currence relation:

F (i)
n (s) =

d
(i−2)
n−1 (s)αn−i(s)F

(i)
n−1(s) + hn−i+1(s)∏i

k=1 αn−k(s)F
(i)
n−1(s) + d

(i)
n (s)

(5)

where F
(i)
i−1(s) = 0, α0 = 0 αj(s) = Zj+1(s)/Zj(s)

hj(s) = sZj(s)mj for j = 1, 2, . . . , and d
(i)
n is as defined

in (4).
Sketch of proof: Define

P (n, i)

= (dn−i+1 − dn−i)

[
i∏

k=1

αn−k(dn−i − dn−i−1) + dn−1d
(i)
n

]
− αn−idnd

(i−2)
n−1 (dn−i − dn−i−1)− hn−i+1dn−1dn.

From (3) and (5), we see that the theorem is equivalent to
P (n, i) = 0 for all i ∈ Z+ and i ≤ n ∈ Z+. The proof will
follow by induction after establishing the following facts:

1)P (n, 1) = 0 for all n ≥ 1.

2)P (n, 2) = 0 for all n ≥ 2.

3)P (n, i) = 0 for any i ≥ 3, n ≥ i
if P (n, i− 1) = P (n− 1, i− 1) = P (n− 1, i− 2) = 0,

by repeatedly using (2) and (4) .

Remark: It can be easily seen that the coefficient∏i
k=1 αn−k in the denominator equals Zn/Zn−i. Hence, (5)

can also be written as

F (i)
n (s) =

d
(i−2)
n−1 Zn−i+1F

(i)
n−1 + sZn−iZn−i+1m

ZnF
(i)
n−1 + d

(i)
n Zn−i

.

The recurrence relation (5) describes a sequence of transfer
functions in the complex variable s. It can also be interpreted
as compositions of Möbius transformations for a fixed s ∈ C,
or equivalently fixed hj ∈ C and αj−1 ∈ C, j = 1, . . . , n;
writing

f (i)n (z) =
d
(i−2)
n−1 αn−iz + hn−i+1∏i

k=1 αn−kz + d
(i)
n

,

we see that the sequence F (i)
n for n = i− 1, i, i+ 1, . . . is

the same as 0, f
(i)
i (0), f

(i)
i+1 ◦ f

(i)
i (0), . . . , for given hj and

αj−1, j = 1, . . . , n.

B. Homogeneous mass chains

For homogeneous mass chains, since Zj(s) = Z(s),mj =
m,∀j, (5) is simplified to

F (i)
n (s) =

di−2(s)F
(i)
n−1(s) + h(s)

F
(i)
n−1(s) + di(s)

for n = i, i+1, . . . , where F (i)
i−1(s) = 0, h(s) = sZ(s)m and

di is as defined in (2). The following results are previously
established:

Theorem 2 ( [3]): For 0 6≡ Z(s) positive real, all poles
in the transfer function F

(i)
n (s) have negative real parts for

any n ∈ Z+ if sZ(s)m does not take values in the interval
(−4, 0) for any s with Re(s) = 0.

Theorem 3 ( [3]): Suppose Z(s) = (k/s+ Y1(s))
−1

where k is a positive constant and Y1(s) is a positive-
real admittance satisfying Y1(0) > 0. Suppose h(jω) =
mjωZ(jω) does not intersect the interval [−4, 0) for any
ω ≥ 0. Then

sup
n≥i

∥∥∥F (i)
n (s)

∥∥∥
∞

is finite for any i = 1, 2, . . . .
Theorem 4 ( [2]): If

h(s) =
a2s2

(1− a)s2 + 2s+ 1
, a > 0,

then
sup
n∈Z+

‖F (1)
n (s)‖∞≤ a.

C. Heterogeneity and uniform boundedness

The present formulation (5) may be useful to investigate
the effect of heterogeneity on the uniform boundedness re-
sults in the homogeneous mass chains. For the first intermass
displacement (i = 1), the recursive relation (5) becomes

F (1)
n =

αn−1F
(1)
n−1 + hn

αn−1F
(1)
n−1 + hn + 1

.
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total number of masses n
1 2 3 4 5 6 7 8 9 10

‖
F

(1
)

n
(s
)‖

∞

0.76

0.77

0.78

0.79

0.8

0.81

0.82

CASE 1 (nominal)
CASE 2
CASE 3
CASE 4 (uniformly distributed in [0.8, 1.2])

Fig. 2. H∞-norm of the first intermass displacement transfer function in
a chain of n masses, F (1)

n , for different mass distributions.

One may consider adopting the design such that hn(s) =
h(s) (i.e., Zn(s) = h(s)/(smn)). Then

F (1)
n =

(mn−1/mn)F
(1)
n−1 + h

(mn−1/mn)F
(1)
n−1 + h+ 1

. (6)

Clearly, the distribution of masses affects the norm bound. To
see this, let us consider the four different mass distributions
in the mass chain of Fig. 1:

CASE 1: mj = 1 for j = 1, 2, . . . , n (nominal case)

CASE 2:

{
mj = 0.8 for j = n, n− 2, . . .

mj = 1.2 for j = n− 1, n− 3, . . .

CASE 3:

{
mj = 1.2 for j = n, n− 2, . . .

mj = 0.8 for j = n− 1, n− 3, . . .

CASE 4: 0.8 ≤ mj ≤ 1.2 for j = 1, 2, . . . , n.

The interconnection impedances Zj(s) are selected such that

sZj(s)mj = h(s) =
0.82s2

0.2s2 + 2s+ 1
.

for j = 1, 2, . . . , n. This corresponds to a = 0.8 in
Theorem 4 and indeed it is observed in Fig. 2 that the H∞-
norm ‖F (1)

n ‖∞ is bounded by 0.8 for CASE 1, the nominal
homogeneous mass chain. We may also see that the H∞-
norm is larger than the nominal case for any n in CASE
2, i.e., the mass alternates between 0.8 and 1.2 from left
to right in the mass chain of Fig. 1. In CASE 3, the mass
distribution pattern is flipped and the H∞-norm is smaller
than the nominal case for any n. For CASE 4, 20 different
mass distributions were generated for each n so that mj ,
j = 1, 2, . . . , n, are uniformly distributed random numbers
in the interval [0.8, 1.2]. It may be observed that the H∞-
norm in CASE 4 for each distribution pattern is between that
in CASE 2 and that in CASE 3.

From these numerical results, it looks promising that we
will be able to establish uniform boundedness in hetero-
geneous mass chains. Deriving explicit conditions will be
considered as a future work.

D. Possible solution path

One of the great features of Möbius transformations is
their close connection to linear algebra [1]; let us associate
with every Möbius transformation g(z) = (az+ b)/(cz+ d)
a corresponding matrix

[g] :=

[
a b
c d

]
.

Compositions of Möbius transformations can then be con-
veniently represented by multiplication of corresponding
matrices:

[g2][g1] = [g2 ◦ g1].

Denote the corresponding matrix to f (i)n in section III-A as[
f (i)n

]
=

[
d
(i−2)
n−1 αn−i hn−i+1∏i
k=1 αn−k d

(i)
n

]
and define[

ξ
(i)
n+1

ζ
(i)
n+1

]
=
[
f
(i)
n+1

] [
ξ
(i)
n

ζ
(i)
n

]
,

[
ξ
(i)
i

ζ
(i)
i

]
:=

[
F

(i)
i

1

]
(7)

for n ≥ i. This formulation was a key in [2] to develop a
scale free design method in homogeneous mass chains and
the similar techniques may be applied to the heterogeneous
case.

IV. CONCLUSIONS

The interconnection of a chain of n masses has been
studied in which neighbouring masses are connected by two-
terminal mechanical impedances. One end of the chain is
connected to a movable point. Formulas for the transfer
functions from the movable point displacement to a given
intermass displacement have been derived in the form of
composition sequences generated by Möbius transforma-
tions. Effects of heterogeneity on the results provided for the
homogeneous mass chains in [2], [3] have been numerically
investigated.
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