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Abstract— In this paper a profit optimization between elec-
tricity producers is formulated. The problem is described by
a linear jump-diffusion system of conditional mean-field type
where the conditioning is with respect to common noise and
a quadratic cost functional involving the second moment, the
square of the conditional expectation of the control actions
of the producers. We provide semi-explicit solution of the
corresponding mean-field-type game problem with common
noise. The equilibrium strategies are in state-and-conditional
mean-field feedback form, where the mean-field term is the
conditional price given the realization of the global uncertainty.

Index Terms— Electricity price dynamics, mean-field-type
games, smart grid

I. INTRODUCTION

Significant models of competition between producers have
been discussed in very simple terms. One widely investigated
model is the Cournot model [1]. Evans (1922,[2]) examined
the Cournot model for quadratic production cost output.
Based on the price model examine in Evans 1922, page 372,
Equation (4), the work of Roos 1925 [3], [4] considered
demand as depending not only on the present price but on
all previous prices as well. This leads to delayed integro-
differential equation. In page 163, Roos 1925 [3] defined
an open-loop solution concept for deterministic differential
Cournot games (which corresponds to the so-called open-
loop Nash equilibrium). Simaan and Takayama (1978,[5]) fo-
cus on the role of capacity constraints and assume the speed
of adjustment to be unity. Fershtman and Kamien (1987,[6])
extended it to allow for an arbitrary adjustment speed. They
investigated both open-loop and closed-loop Nash equilibria
of a class of deterministic differential Cournot game. Since
several interesting studies and body of literature have been
conducted on the dynamic Cournot oligopoly problems [10].

We study a stochastic dynamic Cournot game between
electricity producers where the price of electricity is adjusted
progressively with a local uncertainty, global uncertainty and
jump terms. Our base model is similar to Equation (2) page
163 in Ross (1925,[3]). See similar base model in page 372,
Equation (4) by Evan (1922,[2]). To that base model we

B. Djehiche is with Department of Mathematics, KTH Royal Institute of
Technology, 100 44 Stockholm, Sweden (e-mail: boualem@math.kth.se)

J. Barreiro-Gomez and H. Tembine are with Learning and Game Theory
Laboratory, New York University Abu Dhabi (NYUAD), Saadiyat Campus
PO Box 129188, United Arab Emirates (e-mails: jbarreiro@nyu.edu,
tembine@nyu.edu)

This research work is supported by U.S. Air Force Office of Scientific
Research under grant number FA9550-17-1-0259. This work was conducted
when the first author was visiting the Learning and Game Theory Laboratory
at NYUAD.

add a key term which is related to the risk minimization
[7], [8], [9]. The risk is an important consideration when
uncertainty is involved in the environment. In addition, price
adjustment is subject to uncertainty which is modeled with
a local uncertainty, jump-diffusion and a global uncertainty.

Our goal of this article is to investigate how this simple
price model can be used to capture realistic behaviors ob-
served in smart energy systems. Our contribution can be sum-
marized as follows. We formulate a mean-field-type game
with common noise and jump-diffusion. The equilibrium
systems of such problems often involve a master system
which is a second order infinite dimensional partial integro-
differential equation. We provide semi-explicit solution to the
equilibrium system. We show that, generically, the structure
of the optimal strategies is in state-and-mean-field feedback
form. Here the key mean-field term is the conditional expec-
tation of the price with respect to the filtration generated by
the common noise. Thus, the mean-field is stochastic.

The rest of this paper is organized as follows. The next
section introduces the model and the key interaction terms
at affect the price. Section III examines longer term horizon.
Section IV briefly presents the computation of the Cournot
equilibrium when considering a static price. A decision
support on the market price is discussed in Section V. Section
VI concludes the paper.

II. THE SETTING

Consider a mean-field-type game described by the fol-
lowing settings. Let T := [t0, t1] be the time horizon with
t0 < t1. Moreover, there are n ≥ 2 potential interacting
energy producers over the horizon T . At time t ∈ T ,
producer i’s output is ui(t) ≥ 0. The price dynamics is given
by p(t0) = p0 and

dp = s[a−D − p]dt

+

(
σdB +

∫
θ∈Θ

µ(θ)Ñ(dt,dθ)

)
+ σodBo, (1)

where D(t) :=
∑n
i=1 ui(t) is the supply at time t, and Bo is

standard Brownian motion representing a global uncertainty
observed by all participant to the market. The processes
B and N are local uncertainty or noise. B is a standard
Brownian motion, N is a jump process with Lévy measure
ν(dθ) defined over Θ. It is assumed that ν is a Radon
measure over Θ (the jump space). The process Ñ(dt,dθ) =
N(dt, dθ)−ν(dθ)dt is compensated martingale. We assume
that all these processes are mutually independent. Denote
by FBo

t the filtration generated by the observed common
noise up to t, {Bo(t′), t′ ≤ t}. The number s is positive.
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larger values of s the market price adjusts quicker along
the inverse demand. a, σ, σo are fixed parameters. The jump
rate size µ(.) is in L2

ν(Θ,R) i.e.
∫

Θ
µ2(θ)ν(dθ) < +∞.

The initial distribution of p0 is square integrable: Ep2
0 <∞.

At time t ∈ T , Producer i receives p̄(t)ui − Ci(ui) where
Ci : R→ R, given by

Ci(ui) = ciui +
riu

2
i

2
+
r̄iū

2
i

2
,

is the instant cost function of i. The term ūi = E(ui | FBo
t )

is the conditional expectation of producer i’s output given the
global uncertainty Bo observed in the market, . The last term
in the expression of the instant cost Ci, i.e., r̄iū

2
i

2 , aims to
capture the risk-sensitivity of the producer. The conditional
expectation of the price given the global uncertainty Bo up
to time t is p̄(t) = E(p(t) | FBo

t ). At the terminal time t1
the revenue is − 1

2e
−λit1 (p(t1)− p̄(t1))

2
.

The long-term revenue of producer i is

Ri,T (p0, u) = −q
2
e−λit1 (p(t1)− p̄(t1))

2

+

∫ t1

t0

e−λit [p̄ui − Ci(ui)] dt,

where λi is a discount factor of producer i. Finally, each
producer optimizes its long-term expected revenue.

Moreover, number of remarks are in order.
• This price dynamics model is interesting because it can

be re-interpreted as an error to the standard inverse
demand model.

• The changing s allow us to navigate between several
regime.

• the jump term Ñ capture some of the big change in the
market that may happen randomly

• The global uncertainty Bo captures common noise in
the market, for example, weather conditions and tem-
perature field in specific season.

• Based on the common noise that is observed, a condi-
tional price is calculated. The revenue is computed from
the conditional price.

• This revenue model is similar to the one considered
by Jovanovic 1982 (see page 652 in [11]) who studied
discrete-time mean-field games for selection and evolu-
tion industry. Therein the conditional state appears well
as. However, [11] considered that firms are too small to
affect the price. Here, each of the n firms can influence
the price and cannot be neglected. Global uncertainty
was not considered in [11].

A. Why is this a mean-field-type game?

First, the setup considered here is a strategic game because
the producers are coupled through the price functional.
Second, two conditional mean-field terms are involved:
• the conditional price p̄(t) based on the observations of

the common noise Bo up to t.
• the square of the conditional control action

ū2
i (t) =

[
E(ui | FBo

t )
]2

based on the observations of the common noise Bo up
to t.

These mean-field terms make the problem a game problem
of conditional mean-field type. The resulting price dynamics
is of conditional mean-field type.

A strategy is a mapping that is progressively measurable
to respect the information available to the producer. It maps
an information set of the producer to its set of control action
R+. Let Ui be the set of strategies of producer i.

Definition: [BRi : Best Response of producer i] Any
strategy u∗i (·) ∈ Ui satisfying the infimum in (2)

sup
ui∈Ui

E [Ri,T (p0, u)] ,

dp = s [a−D − p] dt

+

(
σdB +

∫
Θ

µ(θ)Ñ(dt,dθ)

)
+ σodBo,

p0,

(2)

is called a best-response strategy of producer i to the other
producers strategy u−i ∈

∏
j 6=i Uj . The set of best-response

strategies of i is denoted by BRi :
∏
j 6=i Uj → 2Ui where

2Ui denotes the set of subsets of Ui. ♦

B. Finding state-and-mean-field feedback Nash solution

The study of open-loop equilibrium in (deterministic)
differential games goes back at least to Roos (1925 [3],
pages 163-164). In the open-loop setting, the information
structure of the producer is restricted to the common noise
Bo and producers are allowed to employ production output
functions of time and that are Fp0,Bo−measurable. This
means the control action law is in the form φi(t, p0, Bo).
It does not explicitly depend on the price p(t). For the
integrability of the cost functional we impose an integrability
condition on u2

i . The set of square integrable, progres-
sively Fp0,Bo−measurable open-loop strategies is Uoli =
L2
Fp0,Bo ([t0, t1] ,R) .
In this subsection the information structure of the

producer is the the price process in addition to the
common noise. Therefore we look for state-and-mean-
field feedback strategies. The producer is allowed to
employ production output functions of time and that are
Fp0,p,Bo−measurable. This means the control action law
is in the form φi (t, p0, p, Bo) . At each time t the realized
price p(t) will be observed by the agent. The set of square
integrable, progressively Fp0,p,Bo−measurable feedback
strategies is Ufbi = L2

Fp0,p,Bo ([t0, t1]× R,R) . A state-and-
mean-field feedback Nash equilibrium is a strategy profile
ui ∈ Ufbi such that ui ∈ BRi((uj)j 6=i) and ui(t) can be
expressed as a function of (t, p(t), p̄(t)).

Dynamics for the conditional price
Since the conditional price appears in the cost function, we
would like to derive a simple equation for p̄ as well. From the
price dynamics we deduce that the conditional price solves
the following stochastic differential equation:

dp̄ = s
[
a− D̄ − p̄

]
dt+ σodBo, p̄(t0) = p̄0,
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where D̄ =
∑
i ūi is the conditional expectation of the

supply. Thus, the mean-field term p̄ is a stochastic process
driven by the common noise Bo. For given D̄, this is an
OU (Ornstein-Uhlenbeck) process, stabilizing around the
trajectory of a−D as time t1 gets larger.

Proposition: Generically, the problem has the following
interior solution (if any):
Equilibrium strategy in state-and-conditional mean-field
feedback form:

u∗i = −sα̃i
ri

(p− p̄) +
p̄(1− sβ̃i)− (ci + sγ̃i)

ri + r̄i
,

Conditional equilibrium price:
dp̄ = s

a+

n∑
j=1

cj + sγ̃j
rj + r̄j

− p̄

1 +

n∑
j=1

1− sβ̃j
rj + r̄j

dt

+σodBo,
p̄(t0) = p̄0,

Stochastic Riccati system:

dα̃i =

(λi + 2s)α̃i −
s2

ri
α̃2
i − 2s2α̃i

∑
j 6=i

α̃j
rj

 dt

+α̃i,odBo,
α̃i(t1) = −q,

dβ̃i =

(λi + 2s)β̃i−
(1− sβ̃i)2

ri + r̄i
+2sβ̃i

∑
j 6=i

1− sβ̃j
rj + r̄j

dt

+β̃i,odBo,

β̃i(t1) = 0,

dγ̃i =

{
(λi + s)γ̃i − sβ̃ia− β̃i,oσo

+
(1− sβ̃i)(ci + sγ̃i)

ri + r̄i
+ sγ̃i

∑
j 6=i

1− sβ̃j
rj + r̄j

−sβ̃i
∑
j 6=i

cj + sγ̃j
rj + r̄j

}
dt− β̃iσodBo,

γ̃i(0) = 0,

dδ̃i =−

{
− λiδ̃i+

1

2
σ2
o β̃i+

1

2
α̃i

(
σ2 +

∫
Θ

µ2(θ)ν(dθ)

)
+sγ̃ia+ γ̃i,oσo +

1

2

(ci + sγ̃i)
2

ri + r̄i

+sγ̃i
∑
j 6=i

cj + sγ̃j
rj + r̄j

}
dt− σoγ̃idBo,

δ̃i(t1) = 0,

Equilibrium revenue of producer i:

E
1

2
αi(t0)(p(t0)− p̄0)2 +

1

2
βi(t0)p̄2

0 + γi(t0)p̄0 + δi(t0).

Proof: In Appendix.

Taking the expected value of the conditional equilibrium
revenue, we obtain

1

2
αi(t0)var(p(t0)) +

1

2
Eβi(t0)p̄2

0 + Eγi(t0)p̄0 + Eδi(t0)

III. LARGER HORIZON AND STATIONARY SOLUTION

We consider in this section the maximization of the
performance criterion limt1−t0→+∞ ERT (p0, u). We are
interested in studying Nash equilibria within the class of
linear time-invariant strategies.

Limiting feedback strategies

Denoting a set of feedback Nash equilibrium strategies for
the finite horizon game ufbi,T , and those for the infinite hori-
zon horizon game by ufbi,+∞. We will study the relationship
between ufbi,T and ufbi,+∞.

As t1 → +∞, the coefficient αi vanishes and the
(unconstrained) equilibrium strategies becomes

ufbi,+∞ =
p̄(1− sβ̃i)− (ci + sγ̃i)

ri + r̄i
,

(−λi − 2s)β̃i +
(1− sβ̃i)2

ri + r̄i
− 2sβ̃i

∑
j 6=i

1− sβ̃j
rj + r̄j

= 0,

β̃i,o = 0,

Producer i will participate if the price is interesting enough
to get a some revenue. Let p

i
:= ci+sγ̃i

1−sβ̃i
. If in addition, σo

vanishes then the following structure

u∗i =

 p̄(1− sβ̃∗i )− (ci + sγ̃∗i )

ri + r̄i
if p̄ ≥ p

i
,

0 otherwise

provides a stationary equilibrium. When the price increases
the equilibrium output of the producer i increases because
1 − sβ̃∗i > 0. There is a stationary equilibrium price and it
is given by

p̄∗ =

a+

n∑
j=1

cj + sγ̃j
rj + r̄j

/
1 +

n∑
j=1

1− sβ̃j
rj + r̄j

. (3)

Moreover, if the game starts at p̄0 6= p̄∗ the closed-loop
equilibrium price converges exponentially to stationary equi-
librium price. The learning dynamics stabilizes quickly to the
steady state price. Note that when the speed s goes to infinity
sβi has a limit β∗i and the limiting electricity price is

p(s→∞) =

a+

n∑
j=1

cj + γ̃∗j
rj + r̄j

/
1 +

n∑
j=1

1− β̃∗j
rj + r̄j

. (4)

Remark: Notice that the result presented in this paper can
be extended to linear coefficients for σ, µ(θ), and σ0. ♦

IV. STATIC COURNOT COMPETITION EQUILIBRIUM
PRICE

We are interested in investigating the implications of
considering the dynamic learning price model as in (1)
with respect to the static price scenario, i.e., considering
p = a − D. We compute the static revenue of producer i
being

Ri,T (u) = {[a−D]ui − Ci(ui)}Λi,
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where Λi =
∫ t1
t0
e−λitdt,

Ci(ui) = ciui +
1

2
(ri + r̄i)u

2
i .

Hence, the interior best response (if any) of the static Cournot
game is given by

u∗i ∈ arg max
ui∈R
{(a−D)ui − Ci(ui)},

=
a−

∑
j 6=i uj − ci

2 + ri + r̄i
.

Hence, the static Cournot equilibrium price is given by

pC =

a+

n∑
j=1

cj
1 + rj + r̄j

/
1+

n∑
j=1

1

1 + rj + r̄j

. (5)

Finally, notice that the presented analysis allows us to
determine if the consideration of the price dynamics (1) in
the market is beneficial for the consumers. This is evaluated
by comparing the price in (4) and (5).

V. DECISION SUPPORT

In practice it is often not desirable to change continuously
the price. Thus, the above ”virtual” price adjustment model
will be used as a learning feature to help the decision-maker
before acting on the ”real” price for the next time-block. For
example, if the price is decided every three months cycle
then this base model can be used to determine the electricity
market trends and tendencies. If the price is almost in real-
time, this simple adjustment technique can also be used with
higher speed s.

VI. CONCLUDING REMARKS

In this paper we have examined a price formation in smart
energy systems using a price dynamics model introduced by
Roos in 1925. We have introduced a common noise in the
environment. Since the common noise is observed, producers
can condition on it and exploit that information. The new
conditioned price affects the revenues of the producers. We
have provided explicit solution to the master system of
corresponding mean-field-type game with jump-diffusion and
common noise. It is shown that the optimal strategies are in
state-and-mean-field feedback form.
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APPENDIX

Proof Proposition: We provide a proof of the main result
of the paper. To do so, we first write a generic structure of the
discounted revenue functional, with unknown deterministic
functions to be identified. Inspired from the structure of the
terminal revenue function, we try a guess functional in a
quadratic form. Let

fi(t, p) =
1

2
αi(t)(p− p̄)2 +

1

2
βi(t)p̄

2+γi(t)p̄+ δi(t),

where α, β, γ, δ are random functions of time t, that are
FBo
t −measurable such that

fi(t1, p(t1)) = −q
2
e−λit1(p(t1)− p̄(t1))2,

i.e., αi(t1) = −qe−λit1 , βi(t1) = γi(t1) = δi(t1) = 0.
Using Itô’s formula for jump-diffusion process one obtains

dp̄2 =
(
2sp̄(a− D̄ − p̄) + σ2

os
)

dt+ 2p̄σodBo, (6)

d

[
βip̄

2

2

]
=
p̄2dβi

2
+
βid[p̄2]

2
+ βi,op̄σodt, (7)

therefore, replacing (6) in (7) yields

d

[
βip̄

2

2

]
=

1

2
p̄2dβi +

1

2
βi
(
2sp̄

(
a− D̄ − p̄

)
+ σ2

o

)
dt

+ βip̄σodBo + βi,op̄σodt.

We compute the difference between p and p̄.

d [p− p̄] = −s
(
D − D̄ + p− p̄

)
dt

+

(
σdB +

∫
Θ

µ(θ)Ñ(dt, dθ)

)
,

d [p− p̄]2 = 2(p− p̄)
(
σdB +

∫
Θ

µ(θ)Ñ(dt,dθ)

)
+

−2s(p− p̄)(D − D̄ + p− p̄)dt+
(
σ2+

∫
Θ

µ2(θ)ν(dθ)

)
dt. (8)

Moreover,

d

[
αi(p− p̄)2

2

]
=

(p− p̄)2

2
dαi +

1

2
αid

[
(p− p̄)2

]
+ 0, (9)

and replacing (8) in (9) yields

d

[
αi(p− p̄)2

2

]
=

(p− p̄)2

2
dαi+

1

2
αi

(
σ2+

∫
Θ

µ2(θ)ν(dθ)

)
dt

− s(p− p̄)αi(D − D̄ + p− p̄)dt+ (p− p̄)αiσdB

+ (p− p̄)αi
∫

Θ

µ(θ)Ñ(dt, dθ).
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Finally,

d[γip̄] = p̄dγi +
(
sγi
(
a− D̄ − p̄

)
+ γi,oσo

)
dt+ σoγidBo.

Taking the conditional expectation with respect to the
filtration FBo

t1 we arrive at

E
[
fi(t1, p(t1))− fi(t0, p(t0))| FBo

t1

]
=

1

2

∫ t1

t0

(p− p̄)2
(dαi − 2sαidt)− 2sαi(p− p̄)(D − D̄)dt

+
1

2

∫ t1

t0

αi

(
σ2 +

∫
µ2ν(dθ)

)
dt+

1

2

∫ t1

t0

p̄2 (dβi − 2sβidt)

+
1

2

∫ t1

t0

2sβip̄(a− D̄)dt+ (σ2
oβi + 2βi,op̄σo)dt

+
1

2

∫ t1

t0

2βip̄σodBo +

∫ t1

t0

p̄ (dγi − sγidt)

+

∫ t1

t0

(
sγi(a− D̄) + γi,oσo

)
dt+

∫ t1

t0

σoγidBo + dδi,

The expected revenue can be expressed as

e−λitE
[
p̄ui − Ci(ui)| FBo

t1

]
= e−λitE

[
(p̄− ci)ūi| FBo

t1

]
−e−λitE

[
1
2ri(ui − ūi)

2 + 1
2 (ri + r̄i)(ūi)

2| FBo
t1

]
,

We now express the difference between the long-term rev-
enue and the guess functional.

E[Ri,T − fi(t0, p(t0))| FBo
t1 ]

= −q
2
e−λit1E

[
(p(t1)− p̄(t1))2| FBo

t1

]
+

1

2
E
∫ t1

t0

e−λit
(
2(p̄− ci)ūi − ri(ui − ūi)2

−(ri + r̄i)(ūi)
2| FBo

t1

)
dt+ E

1

2

∫ t1

t0

(p− p̄)2(dαi − 2sαidt)

+
1

2

∫ t1

t0

−2sαi(p− p̄)(D−D̄)dt+αi

(
σ2 +

∫
Θ

µ2(θ)ν(dθ)

)
dt

+
1

2

∫ t1

t0

p̄2 (dβi − 2sβidt) + 2sβip̄(a− D̄)dt

+
1

2

∫ t1

t0

(
σ2
oβi + 2βi,op̄σo

)
dt+ 2βip̄σodBo

+

∫ t1

t0

p̄ (dγi − sγidt) + [sγi(a− D̄) + γi,oσo]dt

+

∫ t1

t0

σoγidBo + dδi.

Therefore

E
[
Ri,T − fi(t0, p(t0))| FBo

t1

]
=

(αi(t1)− qe−λit1)

2
E
[
(p(t1)− p̄(t1))2| FBo

t1

]
+E

∫ t1

t0

e−λit

2

(
2(p̄− ci)ūi − ri(ui − ūi)2−(ri + r̄i)(ūi)

2
)

−2sαi(p− p̄)(D − D̄)− 2s(βip̄+ γi)D̄dt

+E
∫ t1

t0

(p− p̄)2

2
(dαi − 2sαidt)+

αi
2

(
σ2+

∫
Θ

µ2(θ)ν(dθ)

)
dt

+
1

2

∫ t1

t0

p̄2 (dβi − 2sβidt) + 2sβip̄a dt

+
1

2

∫ t1

t0

(σ2
oβi + 2βi,op̄σo)dt+ 2βip̄σodBo

+

∫ t1

t0

p̄ (dγi − sγidt) + [sγia+ γi,oσo]dt

+

∫ t1

t0

σoγidBo + dδi,

We now use a completion of square technique. Therefore,
the term

e−λit
(
2(p̄− ci)ūi − ri(ui − ūi)2 − (ri + r̄i)(ūi)

2
)

− 2sαi(p− p̄)(D − D̄)− 2s(βip̄+ γi)D̄

is equal to

− (ri + r̄i) e
−λit(ūi)

2 + 2
[
(p̄− ci)e−λit − s(βip̄+ γi)

]
ūi

− rie−λit(ui − ūi)2 − 2sαi(p− p̄)(ui − ūi)
− 2sαi(p− p̄)(D−i − D̄−i)− 2s(βip̄+ γi)D̄−i

= −(ri + r̄i)e
−λit

(
ui−

p̄(e−λit−sβi)−(cie
−λit+sγi)

(ri + r̄i)e−λit

)2

− rie−λit

(
ui − ūi +

sαi(p− p̄)
rie−λit

)2

+ (p− p̄)2

(
s2α2

i

rie−λit

+2s2αi
∑
j 6=i

αj
rje−λjt

+ p̄2

(
(e−λit − sβi)2

(ri + r̄i)e−λit

−2sβi
∑
j 6=i

e−λjt − sβj
(rj + r̄j)e−λjt

−2p̄

(
(e−λit−sβi)(cie−λit+sγi)

(ri + r̄i)e−λit

+sγi
∑
j 6=i

(e−λjt − sβj)
(rj + r̄j)e−λjt

− sβi
∑
j 6=i

(cje
−λjt + sγj)

(rj + r̄j)e−λjt


+

(cie
−λit + sγi)

2

(ri + r̄i)e−λit
+ 2sγi

∑
j 6=i

(cje
−λjt + sγj)

(rj + r̄j)e−λjt
.

where we used D−i− D̄−i = −s(p− p̄)
∑
j 6=i

αj
rje−λjt

, and

D̄−i = p̄
∑
j 6=i

e−λjt − sβj
(rj + r̄j)e−λjt

−
∑
j 6=i

cje
−λjt + sγj

(rj + r̄j)e−λjt
.

It follows that

E
[
Ri,T − fi(t0, p(t0))| FBo

t1

]
=
αi(t1)− qe−λit1

2
E
[
(p(t1)− p̄(t1))2| FBo

t1

]
−E
∫ t1

t0

ri + r̄i
2

e−λit

(̄
ui−

p̄(e−λit−sβi)−(cie
−λit+sγi)

(ri + r̄i)e−λit

)2

dt

−E
∫ t1

t0

ri
2
e−λit

(
ui − ūi +

sαi(p− p̄)
rie−λit

)2

dt

+E
∫ t1

t0

(p− p̄)2

2

{
dαi +

(
−2sαi +

s2α2
i

rie−λit

+2s2αi
∑
j 6=i

αj
rje−λjt

 dt
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+
1

2

∫ t1

t0

p̄2

{
dβi + (−2sβi +

(e−λit − sβi)2

(ri + r̄i)e−λit

−2sβi
∑
j 6=i

(e−λjt − sβj)
(rj + r̄j)e−λjt

)dt


+

∫ t1

t0

p̄ {dγi − sγidt+ sβiadt+ βi,oσodt

+βiσodBo −
(e−λit − sβi)(cie−λit + sγi)

(ri + r̄i)e−λit

−sγi
∑
j 6=i

(e−λjt − sβj)
(rj + r̄j)e−λjt

+ sβi
∑
j 6=i

(cje
−λjt + sγj)

(rj + r̄j)e−λjt


+

∫ t1

t0

dδi +

[
1

2
σ2
oβi +

1

2
αi

(
σ2 +

∫
Θ

µ2(θ)ν(dθ)

)
+sγia+ γi,oσo] dt+ σoγidBo

+
1

2

(cie
−λit + sγi)

2

(ri + r̄i)e−λit
+ sγi

∑
j 6=i

(cje
−λjt + sγj)

(rj + r̄j)e−λjt
.

We deduce that E
[
Ri,T − fi(t0, p(t0))| FBo

t1

]
≤ 0 and

the equality occurs when the random coefficient solves the
following system:

ū∗i =
p̄(e−λit − sβi)− (cie

−λit + sγi)

(ri + r̄i)e−λit
,

Equilibrium strategy in state-and-mean-field feedback form:

u∗i = −sαi(p− p̄)
rie−λit

+ ū∗i ,

= − sαi
rie−λit

(p− p̄) +
p̄(e−λit − sβi)− (cie

−λit + sγi)

(ri + r̄i)e−λit
,

Conditional equilibrium price:

dp̄ = s

a+

n∑
j=1

cje
−λjt + sγj

(rj + r̄j)e−λjt

−p̄

1 +

n∑
j=1

e−λjt − sβj
(rj + r̄j)e−λjt

dt+ σodBo,

p̄(t0) = p̄0,

Stochastic Riccati system:

dαi = −

−2sαi +
s2α2

i

rie−λit
+ 2s2αi

∑
j 6=i

αj
rje−λjt

 dt

+αi,odBo,

αi(t1) = −qe−λit1 ,

dβi = −
(
−2sβi +

(e−λit − sβi)2

(ri + r̄i)e−λit

−2sβi
∑
j 6=i

(e−λjt − sβj)
(rj + r̄j)e−λjt

 dt+ βi,odBo,

βi(t1) = 0,
dγi = {sγi − sβia− βi,oσo

+
(e−λit−sβi)(cie−λit+sγi)

(ri + r̄i)e−λit
+sγi

∑
j 6=i

(e−λjt − sβj)
(rj + r̄j)e−λjt

−sβi
∑
j 6=i

(cje
−λjt + sγj)

(rj + r̄j)e−λjt

dt− βiσodBo,



γi(0) = 0,

dδi = −
{

1

2
σ2
oβi +

1

2
αi(σ

2 +

∫
Θ

µ2(θ)ν(dθ))

+sγia+ γi,oσo +
1

2

(cie
−λit + sγi)

2

(ri + r̄i)e−λit

+sγi
∑
j 6=i

(cje
−λjt + sγj)

(rj + r̄j)e−λjt

dt− σoγidBo,

δi(t1) = 0,

Conditional equilibrium revenue: 1
2αi(t0)(p(t0) − p̄0)2 +

1
2βi(t0)p̄2

0 +γi(t0)p̄0 +δi(t0). Set α̃i = αie
λit, β̃i = βie

λit.
Then, Equilibrium strategy in state-and-mean-field feedback
form:

u∗i = −sα̃i
ri

(p− p̄) +
p̄(1− sβ̃i)− (ci + sγ̃i)

ri + r̄i
,

Conditional equilibrium price:
dp̄ = s

a+

n∑
j=1

cj + sγ̃j
rj + r̄j

− p̄

1 +

n∑
j=1

1− sβ̃j
rj + r̄j

dt

+σodBo,
p̄(t0) = p̄0,

Stochastic Riccati system:

dα̃i =

(λi + 2s)α̃i −
s2

ri
α̃2
i − 2s2α̃i

∑
j 6=i

α̃j
rj

dt

+α̃i,odBo,
α̃i(t1) = −q,

dβ̃i =

(λi + 2s)β̃i−
(1− sβ̃i)2

ri + r̄i
+2sβ̃i

∑
j 6=i

1− sβ̃j
rj + r̄j

dt

+β̃i,odBo,

β̃i(t1) = 0,

dγ̃i =
{

(λi + s)γ̃i − sβ̃ia− β̃i,oσo

+
(1− sβ̃i)(ci + sγ̃i)

ri + r̄i
+ sγ̃i

∑
j 6=i

1− sβ̃j
rj + r̄j

−sβ̃i
∑
j 6=i

cj + sγ̃j
rj + r̄j

dt− β̃iσodBo,

γ̃i(0) = 0,

dδ̃i =−
{
−λiδ̃i+

1

2
σ2
o β̃i+

1

2
α̃i

(
σ2 +

∫
Θ

µ2(θ)ν(dθ)

)
+sγ̃ia+ γ̃i,oσo +

1

2

(ci + sγ̃i)
2

(ri + r̄i)

+sγ̃i
∑
j 6=i

(cj + sγ̃j)

(rj + r̄j)

dt− σoγ̃idBo,

δ̃i(t1) = 0,

completing the proof �
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