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Abstract— We report a convergence result of kernel-based
collocation methods for Hamilton-Jacobi-Bellman equations.
In particular, we find the class of kernels and the structure
of collocation points explicitly under which the process of
iterative interpolation is stable, and show that the functions
constructed by the collocation methods converge to a unique
viscosity solution of the Hamilton-Jacobi-Bellman equations.

I. INTRODUCTION

In this talk, we are concerned with the numerical methods
for Hamilton-Jacobi-Bellman equations defined on [0, T ] ×
R

d:
{

∂tv + inf
a∈U

Ha(t, x, v(t, x), Dv(t, x), D2v(t, x)) = 0,

v(T, x) = f(x),
(1)

where Ha denotes the Hamiltonian for a control a ∈ U
arising from a stochastic control problem over finite horizon
T . Here we have denoted by ∂t the partial differential with
respect to the time variable t, by D1 and D2 the gradient and
Hessian with respect to the spacial variable x, respectively.
The conditions imposed on Ha, A, and f are described in
Section II below.

Several numerical methods for fully nonlinear parabolic
partial differential equations (1) are proposed. For example,
the finite difference methods (see, e.g., Kushner and Dupuis
[1] and Bonnans and Zidani [2]), the finite-element like
methods (see, e.g., Camilli and Falcone [3] and Debrabant
and Jakobsen [4]), and the probabilistic methods (see, e.g.,
Pagès et al. [5], Fahim et al. [6] Guo et.al [7] and Nakano
[8]).

An another possible approach to (1) is to use the kernel-
based (meshfree) collocation method proposed by Kansa [9].
In this method, we seek an approximate solution of the
form of a linear combination of a radial basis function (e.g.,
multiquadrics in the Kansa’s original work). Substituting
this form into a partial differential equation leads to an
equation for the collocation points. Then the approximate
solution is constructed by the kernel-based interpolation
of these collocation points. As for rigorous convergence,
Schaback [10] and Nakano [11] study the case of linear
operator equations and fully nonlinear parabolic equations,
respectively. However, at least for parabolic equations, there
is little known about explicit examples of the grid structure
and kernel functions that ensure rigorous convergence. An

*This work is supported by JSPS KAKENHI Grant Number JP17K05359.
1 Yumiharu Nakano is with Faculty of Department of Mathematical

and Computing Science, Tokyo Institute of Technology, Ookayama 2-12-1,
Meguro-ku, Tokyo, Japan nakano@c.titech.ac.jp

exception is Hon et.al [12], where an error bound is obtained
for a special heat equation in one dimension. In this report,
we show that the functions constructed by the collocation
methods converge to a unique viscosity solution of (1) under
the same condition imposed in [13], where the convergence
of the collocation method for Zakai equations is analyzed.

II. KERNEL-BASED COLLOCATION METHODS

We consider the terminal value problem (1) under the
following assumptions:

Assumption 2.1: There exists a positive constant C0 such
that the following are satisfied:

(i) U is a subset of some Euclidean space.
(ii) For a ∈ U , t ∈ [0, T ], x ∈ R

d, z ∈ R, p ∈ R
d, and

γ, γ′ ∈ S
d with γ ≥ γ′,

Ha(t, x, z, p, γ) ≤ Ha(t, x, z, p, γ′).

(iii) There exist a continuous function F0 on [0, T ] such that

|Ha(t, x, z, p, γ)−Ha(t′, x′, z′, p′, γ′)|

≤ |F0(t)− F0(t
′)|

+ C0(|x− x′|+ |z − z′|+ |p− p′|+ |γ − γ′|)

for a ∈ U , t, t′ ∈ [0, T ], x, x′ ∈ R
d, z, z′ ∈ R, p, p′ ∈

R
d, and γ, γ′ ∈ S

d.
(iv) For a ∈ U , t ∈ [0, T ], x ∈ R

d, z ∈ R, p ∈ R
d, and

γ ∈ S
d,

|Ha(t, x, z, p, γ)| ≤ C0(1 + |z|+ |p|+ |γ|)

(v) The function f is continuous and bounded on R
d.

We assume that the following comparison principle holds:
Assumption 2.2: For every bounded, upper-

semicontinuous viscosity subsolution u of (1) and bounded
lower-semicontinuous viscosity supersolution w of (1), we
have

u(t, x) ≤ w(t, x), (t, x) ∈ [0, T ]× R
d.

Under Assumptions 2.1 and 2.2, there exists a unique
continuous viscosity solution v of (1). See [14].

We shall recall from [11] the kernel-based collocation
methods with time discretization for (1). In what follows, the
function Φ is assumed to be the Wendland kernel Φ(x) =
φd,τ (|x|) with fixed τ ∈ N, which is given by

φd,τ (r) =











∫ 1

r

s(1− s)ℓ(s2 − r2)τ−1ds, 0 ≤ r ≤ 1,

0, r > 1,

where ℓ = max{k ∈ Z : k ≤ d/2} + τ + 1. Let h > 0
be a parameter that describes approximate solutions, Γ =
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{x(1), . . . , x(N)} ⊂ (−R,R)d with R > 1, and {t0, . . . , tn}
the set of time grid points such that 0 = t0 < t1 < · · · <
tn = T . Then set A = {Φ(x(i) − x(j))}1≤i,j≤N and think
of the interpolant

vh(tk, x) =
N
∑

j=1

(A−1vhk )jΦ(x− x(j)), x ∈ R
d, (2)

of vhk = (vhk,1, . . . , v
h
k,N )T ∈ R

N to be specified below.
Substituting this into the time discretized equation

v(tk+1, x)− v(tk, x)

tk+1 − tk
+H(tk+1, x; v(tk+1, ·)) ≃ 0,

we derive the following equation for {vhk}:

vhk+1,j − vhk,j = −(tk+1 − tk)Hk+1,j(v
h
k+1),

k = 0, . . . , n− 1, j = 1, . . . , N.

Here, for any C2-function ϕ on R
d,

H(t, x;ϕ) = inf
a∈U

Ha(t, x, ϕ(x), Dϕ(x), D2ϕ(x)), x ∈ R
d,

and Hk,j(v
h
k ) = H(tk, x

(j); vh(tk, ·)). The terminal condi-
tion leads to vhn,j = f(x(j)), j = 1, . . . , N . Thus, denoting
Hk(v

h
k ) = (Hk,1(v

h
k ), . . . , Hk,N (vhk ))

T, we get
{

vhk = vhk+1 + (tk+1 − ti)Hk+1(v
h
k+1), k = 0, . . . , n− 1,

vhn = f |Γ.
(3)

Consequently, we define the function vh(tk, x), a candidate
of an approximate solution of (1), by (2) with {vhk} deter-
mined by the equation (3).

III. A CONVERGENCE RESULT

To discuss the error of the approximation above, set ∆t =
max1≤i≤n(ti − ti−1) and consider the Hausdorff distance
∆1x between Γ and (−R,R)d, and the separation distance
∆2x defined respectively by

∆1x = sup
x∈(−R,R)d

min
j=1,...,N

|x− x(j)|,

∆2x =
1

2
min
i6=j

|x(i) − x(j)|.

Then suppose that ∆t, R, N , ∆1x and ∆2x are functions
of h. In what follows, #K denotes the cardinality of a finite
set K.

Assumption 3.1: (i) The parameters ∆t, R, N , and ∆1x
satisfy ∆t → 0, R → ∞, N → ∞, and ∆1x → 0 as
h ց 0.

(ii) There exist c1, c2, c3, c4 and λ, positive constants inde-
pendent of h, such that for any i = 1, . . . , N ,

#

{

j ∈ {1, . . . , N} : |(A−1)ij | > c1
(∆2x)

d

N

}

≤ c2(∆2x)
−λd,

and that

c3(∆2x)
−(1+λ)d ≤ R1/2 ≤ c4(∆1x)

−(τ−3/2)/d.

Remark 3.2: In the case of a uniform grid, a sufficient
condition for which the latter part of Assumption 3.1 (ii)
holds is

c5N
(1−1/(1+2d(1+λ)) 1

d ≤ R ≤ c6N
(1−d/(d+2τ−3)) 1

d

with τ ≥ 3/2 + (1 + λ)d2, for some positive constants c5
and c6.

The following result tells us that the process of iterative
kernel-based interpolation is stable, which is a key to our
convergence analysis. For a proof we refer to [13].

Lemma 3.3: Suppose that Assumption 3.1 and τ ≥ 3
hold. Then, there exists h0 > 0 such that for |α|1 ≤ 3,

sup
0<h≤h0

sup
x∈(−R,R)d

|DαI(g)(x)| ≤ C max
j=1,...,N

|g(x(j))|.

Here is our main result.
Theorem 3.4: Suppose that Assumptions 2.1, 2.2 and 3.1

hold. Suppose moreover that τ ≥ 3. Then we have

lim
tk→t, hց0

vh(tk, x) = v(t, x),

uniformly on any compact subset of Rd.
Remark 3.5: In [11], the convergence result as in Theorem

3.4 is proved under more normative assumptions. Here, we
reveal explicit conditions under which the convergence is
guaranteed.

We refer to [15] for details.
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