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Abstract— In this work we expand on the symplectic for-
mulation of thermodynamic systems exposed in [30], [16], and
inspired by [3]. The main novel contribution is the geometric
formulation of open thermodynamic systems as a homogeneous
Lagrangian submanifold of the product of the symplectized
thermodynamic phase space and a space of external variables.
This leads to a natural property of shifted passivity to be used
for analysis and control. Furthermore, it will be discussed how
this homogeneous Lagrangian submanifold admits a natural
(singular) Riemannian metric.

I. EXTENDED ABSTRACT

A. Introduction

The geometric formulation of mechanical systems has
spurred symplectic geometry; see e.g. the classical textbooks
[2], [1], [14]. Symplectic geometry was also underlying the
formulation of Hamiltonian input-output systems, starting
with the ground-breaking paper [5] and continued in e.g.
[25], [28], [26]. By generalizing symplectic and Poisson
structures to Dirac structures, and by emphasizing port-based
modeling of multi-physics systems, this also led to the theory
of port-Hamiltonian systems; see e.g. [15], [29], and the
introductory survey [31].

The geometric formulation of thermodynamics has re-
mained more elusive. Starting from Gibbs fundamental re-
lation, contact geometry was recognized as an appropriate
geometric framework; see [13], [18], [19], [20], [21], [6].
Recently, the interest in contact-geometric descriptions of
thermodynamics has been intensified; see e.g. [17], [4],
[12],[11], [9]. In particular, this has led to the theory of
contact control systems, see [7], [8], [22], [23], [24].

On the other hand, it is well-known in geometry that
contact manifolds can be naturally symplectized to symplec-
tic manifolds with an additional structure of homogeneity;
see [2], [14] for textbook expositions. Nevertheless, the
applications of this symplectization procedure appear to be
largely confined to time-dependent Hamiltonian mechanics
[14] and partial differential equations [2]. Only in [3] it was
argued that the symplectization of contact manifolds provides
an insightful viewpoint to thermodynamic systems as well.

Inspired by [3], and motivated by control problems in
physical systems with thermodynamic components, our re-
cent work [30], [16] expands the symplectization point of
view. In [30] the definition of homogeneous Hamiltonian
control systems was provided, by symplectization of the
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notion of contact control systems developed in [6], [7],
[8], [22], [23], [24], [17]. Furthermore, in the companion
paper [16] a number of examples of multi-physics and
thermodynamical systems was treated within this geometric
framework.

In this talk we will continue on the work in [30], [16]
by focussing on the geometric formalization of the state
properties of open thermodynamic systems as homogeneous
Lagrangian submanifolds of the product of the symplectized
thermodynamic phase space with the space of external vari-
ables.

B. The geometric framework

Recall the definition of a contact manifold; see [2], [14].
A contact manifold is a (2n + 1)-dimensional manifold M
equipped with a maximally non-integrable field of hyper-
planes ξ. This means that ξ = ker θ ⊂ TM for a, possibly
only locally defined, 1-form θ on M satisfying

θ ∧ (dθ)n 6= 0 (1)

By Darboux’s theorem there exist local coordinates
q0, q1, · · · , qn, γ1, · · · , γn for M such that

θ = dq0 −
n∑

i=1

γidq
i (2)

The canonical example of a contact manifold is the follow-
ing; see e.g. [2]. Consider an (n+ 1)-dimensional manifold
Q, and consider at any point q ∈ Q the set of n-dimensional
subspaces of the (n + 1)-dimensional tangent space TqQ.
This defines an (2n + 1)-dimensional manifold M , which
is a fiber bundle over the base space manifold Q. A field
of hyperplanes ξ on M is defined by considering at each
point (q, S) ∈ M , with q ∈ Q and S an n-dimensional
subspace of TqQ, the subspace of all tangent vectors at (q, S)
which are such that the projection to TqQ is contained in
the n-dimensional subspace S. It can be readily verified that
the thus defined field of hyperplanes ξ is indeed maximally
non-integrable. Obviously, any n-dimensional subspace of
the tangent space TqQ can be identified with all non-zero
multiples of some cotangent vector in T ∗

qQ, whose kernel
equals this subspace. Hence it follows that the thus defined
canonical contact manifold is equal to the projectivization
P(T ∗Q) of the cotangent bundle T ∗Q, i.e., the fiber bundle
over Q with fiber at any point q ∈ Q given by the
projective space P(T ∗

qQ). (Recall that elements of P(T ∗
qQ)

are identified with rays in T ∗
qQ, i.e., non-zero multiples of

non-zero cotangent vectors.) Furthermore, q0, · · · , qn in (2)
can be taken to be coordinates for Q. Finally, from Darboux’s
theorem it follows that any (2n+1)-dimensional manifold M
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is locally contactomorphic to a canonical contact manifold
P(T ∗Q) with dimQ = n+ 1.

Any (2n + 1)-dimensional contact manifold M can be
symplectized to a (2n+2)-dimensional symplectic manifold;
see [2], [14]. In case of M = P(T ∗Q) this is very clear: the
symplectization of P(T ∗Q) is simply given by the cotangent
bundle T ∗Q without its zero-section; denoted by T ∗

0Q. The
projection from T ∗

0Q to P(T ∗Q), taking non-zero cotangent
vectors to the corresponding equivalence classes (rays) in the
cotangent space will be denoted by

π : T ∗
0Q→ P(T ∗Q) (3)

The cotangent bundle T ∗Q, as well as T ∗
0Q, is endowed with

its canonical 1-form α, in natural coordinates

(q, p) = (q0, q1, · · · , qn, p0, p1, · · · , pn) (4)

for T ∗Q given by

α =

n∑
i=0

pidq
i, (5)

as well as its canonical symplectic form ω := dα expressed
as

ω = dα =

n∑
i=0

dpi ∧ dqi (6)

Note that the contact form θ on P(T ∗Q), as well as the local
Darboux coordinates as in (2) for θ, are obtained from α and
the natural coordinates (4) for T ∗

0Q as follows. Consider
local coordinates q0, q1, · · · , qn, p0, p1, · · · , pn as in (4),
and consider a neighborhood where e.g. p0 6= 0. Then define

γi := −
pi
p0
, i = 1, · · · , n (7)

It follows that

α = p0(dq
0 −

n∑
i=1

γidq
i) = p0θ (8)

Performing the same construction for any coordinate pj 6= 0
(instead of p0) this yields different definitions for γ1, · · · , γn.
This corresponds in the case of thermodynamical systems
to the choice of different representations; e.g. the energy
representation of a thermodynamical systems instead of its
entropy representation; see [16] for the treatment of a number
of examples.

C. Homogeneity and correspondence between P(T ∗Q) and
T ∗
0Q

It turns out that there is a one-to-one correspondence
between contact Hamiltonian vector fields on P(T ∗Q) and
ordinary Hamiltonian vector fields on the symplectic mani-
fold T ∗

0Q by restricting the Hamiltonians on T ∗
0Q to Hamil-

tonians that are homogeneous of degree 1 in the p-variables.
Similarly, there is a correspondence between Legendre sub-
manifolds of P(T ∗Q) and Lagrangian submanifolds of T ∗

0Q
satisfying a homogeneity property.

Definition 1.1: A function h : T ∗
0Q → R is called

homogeneous (of degree 1 in p0, · · · , pn) if

h(q0, q1, · · · , qn, λp0, λp1, · · · , λpn) =

λh(q0, q1, · · · , qn, p0, p1, · · · , pn), ∀λ 6= 0
(9)

Homogeneity is characterized by Euler’s theorem. First, con-
sider T ∗

0Q with its canonical 1-form α. Define the dilation
vector field D by

iDdα = α (10)

Proposition 1.2: A differentiable function h : T ∗
0Q → R

is homogeneous if and only if
n∑

i=0

pi
∂h

∂pi
(q, p) = h(q, p), for all (q, p) ∈ T ∗

0Q (11)

or equivalently LDh = h, with L denoting the Lie derivative.
Furthermore [30], if h : T ∗

0Q → R is homogeneous then
the ordinary Hamiltonian vector field Xh on T ∗

0Q generated
by h satisfies

LXh
α = 0 (12)

Conversely, if LXh
α = 0 then h up to a constant is

homogeneous.

Recall that a vector field X on a contact manifold is called
a contact vector field if

LXθ = ρθ (13)

for some function ρ. Furthermore, the function K := θ(X)
is called the contact Hamiltonian of the contact vector field
X . Conversely, for any differentiable function K it can be
shown that there exists a unique contact vector field X such
that K = θ(X), and we denote this contact vector field by
XK .

It can be shown that every contact Hamiltonian vector
field on the contact manifold P(T ∗Q) can be lifted to
an ordinary Hamiltonian vector field Xh on T ∗

0Q with a
homogeneous Hamiltonian h, and conversely, that every
ordinary Hamiltonian vector field Xh on T ∗

0Q with homoge-
neous Hamiltonian h projects (under π) to a contact vector
field on P(T ∗Q) with contact Hamiltonian K given by the
projection of the homogeneous Hamiltonian h. Furthermore,
this correspondence is such that the Jacobi bracket of two
contact Hamiltonians corresponds to the Poisson bracket of
the corresponding homogeneous Hamiltonians [2].

With regard to the correspondence between Legendre sub-
manifolds of P(T ∗Q) and Lagrangian submanifolds of T ∗

0Q
the story is as follows. Recall that a Legendre submanifold
L of the contact manifold P(T ∗Q) is an integral manifold
of θ of maximal dimension. It follows that for an (n + 1)-
dimensional Q the dimension of a Legendre submanifold of
P(T ∗Q) is n. On the other hand, a Lagrangian submanifold
Ls of the symplectic space T ∗

0Q is a manifold of maximal
dimension restricted to which the symplectic form ω = dα
is zero. For Q being (n + 1)-dimensional the dimension of
a Lagrangian submanifold Ls ⊂ T ∗

0Q is n+ 1.
Definition 1.3: A Lagrangian submanifold Ls ⊂ T ∗

0Q is
called homogeneous if (q, p) ∈ Ls implies (q, λp) ∈ Ls for
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every λ 6= 0, or equivalently, the dilation vector field D is
tangent to Ls everywhere.
Homogeneity of Ls can be nicely characterized as follows.

Proposition 1.4: A Lagrangian submanifold Ls ⊂ T ∗
0Q is

homogeneous if and only if α restricted to Ls is zero.
We mention that homogeneity of Lagrangian submanifolds
equivalently can be expressed in terms of homogeneity of
their generating functions, and this was in fact the point of
view taken in [3].

Overall, it follows that the contact-geometric formulation
of thermodynamic systems can be immediately translated to
a symplectic formulation, with Hamiltonians and Lagrangian
submanifolds that are homogeneous (with an extra ’gauge’
variable p0). The symplectization not only simplifies the
structure of the theory and the computations, but also offers
a natural framework for defining the state properties of open
thermodynamic systems as indicated in the next subsection.

D. State properties of open thermodynamic systems

As discussed in [3], see [30], [16] for an in-depth geo-
metric exposition, the state properties of a thermodynamic
system are specified by a homogeneous Lagrangian subman-
ifold Ls ⊂ T ∗

0Q. The generating function of this Lagrangian
submanifold corresponds to a thermodynamic potential such
as internal energy or entropy. In the present talk we will
extend this point of view to the geometric characterization
of an open thermodynamic system, where next to the thermo-
dynamic potential the interaction port of the thermodynamic
system with its environment is explicitly modeled. This is
captured by a homogeneous Lagrangian submanifold of the
product of T ∗

0Q with the set of external (port) variables.
Such definition naturally leads to a uniform shifted passiv-

ity property of open thermodynamical systems, with storage
function given by the availability function corresponding to
the thermodynamic potential of the homogeneous Lagrangian
submanifold. (The availability function is also called the
shifted storage function [27], or Bregman divergence, in the
context of passive systems.) Obviously, this has immediate
implications for analysis and control. Furthermore, we will
characterize the invariance of this Lagrangian submanifold
with respect to external processes. Finally we will show
how the homogeneous Lagrangian submanifold is endowed
with a (singular) Riemannian metric (see also [19] and
references therein), which plays an important role in the
stability analysis.

REFERENCES

[1] R.A. Abraham, J.E. Marsden. Foundations of Mechanics, 2nd ed.
Benjamin/Cummings, Reading, MA, 1978.

[2] V.I. Arnold. Mathematical Methods of Classical Mechanics. Springer,
2nd edition, 1989.

[3] R. Balian, P. Valentin. Hamiltonian structure of thermodynamics with
gauge. Eur. J. Phys. B, 21:269–282, 2001.

[4] A. Bravetti, C.S. Lopez-Monsalvo, F. Nettel. Contact symmetries
and Hamiltonian thermodynamics. Annals of Physics, 361:377 – 400,
2015.

[5] R.W. Brockett. Geometric Control Theory, vol. 7 of Lie groups:
History, Frontiers and Applications, ’Control theory and analytical
mechanics’, 1–46. MathSciPress,, Brookline, 1977. C. Martin and R.
Hermann eds.

[6] D. Eberard, B.M. Maschke, A.J. van der Schaft. An extension of
pseudo-Hamiltonian systems to the thermodynamic space: towards a
geometry of non-equilibrium thermodynamics. Reports on Mathemat-
ical Physics, 60(2):175–198, 2007.

[7] A. Favache, B.M. Maschke, V. Dos Santos and D. Dochain. Some
properties of conservative control systems. IEEE trans. on Automatic
Control, 54(10):2341–2351, 2009.

[8] A. Favache, D. Dochain, B.M. Maschke. An entropy-based formula-
tion of irreversible processes based on contact structures,. Chemical
Engineering Science, 65:5204–5216, 2010.

[9] F. Gay-Balmaz, H. Yoshimura. A Lagrangian variational formulation
for nonequilibrium thermodynamics. Part i: Discrete systems. Journal
of Geometry and Physics, 111, 169 – 193, 2017.

[10] M. Grmela. Contact geometry of mesoscopic thermodynamics and
dynamics. Entropy, 16(3), 1652, 2014.

[11] D. Gromov. Two approaches to the description of the evolution of
thermodynamic systems. IFAC-PapersOnLine, 49(24), 34 – 39. 2th
IFAC Workshop on Thermodynamic Foundations for a Mathematical
Systems Theory TFMST 2016.

[12] D. Gromov, F. Castanos. The geometric structure of interconnected
thermo-mechanical systems. IFAC-PapersOnLine, 50(1), 582-587.
DOI: 10.1016/j.ifacol.2017.08.083, 2017.

[13] R. Hermann Geometry, physics and systems. Marcel Dekker, New
York, 1973.

[14] P. Libermann, C.-M. Marle. Symplectic geometry and analytical
mechanics. D. Reidel Publishing Company, Dordrecht, Holland, 1987.

[15] B.M. Maschke, A.J. van der Schaft. Port controlled Hamiltonian
systems: modeling origins and system theoretic properties. In Proc.
3rd Int. IFAC Conf. on Nonlinear Systems Theory and Control,,
NOLCOS’92, 282–288, Bordeaux, 1992.

[16] B.M. Maschke, A.J. van der Schaft. Homogeneous Hamiltonian
control systems, Part II: Application to thermodynamic systems.
Submitted to the 6th IFAC Workshop on Lagrangian and Hamiltonian
Methods in Nonlinear Control 2018.
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Elektronik und Übertragungstechnik, 49: 362–371, 1995.

[30] A.J. van der Schaft, B.M. Maschke. Homogeneous Hamiltonian
control systems, Part I: Geometric formulation. Submitted to the 6th
IFAC Workshop on Lagrangian and Hamiltonian Methods in Nonlinear
Control 2018.

[31] A.J. van der Schaft, D. Jeltsema, ”Port-Hamiltonian Systems Theory:
An Introductory Overview,” Foundations and Trends in Systems and
Control, vol. 1, no. 2/3, 173–378, 2014.

MTNS 2018, July 16-20, 2018
HKUST, Hong Kong

407


