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Abstract— This paper investigates the distributed fault
detection problem for linear time-invariant (LTI) systems with
distributed measurement output. We propose a distributed
fault detection observer (DFDO) design method to detect
actuator faults of the monitored system in the presence of a
bounded process disturbance. The DFDO consists of a network
of local fault detection observers, which communicate with
their neighbors as prescribed by the given network graph. A
systematic algorithm for DFEO design is addressed, enabling
the residual to be robust against the effects of the external
bounded process disturbance. Based on L∞ analysis, a bank
of linear matrix inequalities is presented to calculate the
gain matrices and residual thresholds in our distributed fault
detection scheme. Finally, we illustrate the effectiveness of the
proposed distributed fault detection approach by means of a
numerical simulation.

Keywords: Distributed fault detection, linear system observers,
LMIs, sensor networks.

I. INTRODUCTION

In the past three decades, fault detection and isolation
(FDI) have been extensively studied to improve the reli-
ability of modern control systems (see, e.g., [1], [2], [3],
[4] and the references therein). Model-based fault detection
has attracted considerable attention and numerous results
have been reported [5], [6], [7], [8], [9]. Among the model-
based fault detection schemes, observer-based fault detection
is well-established and plays an important role in research
and application domains. However, most of the existing FDI
methods developed up to now assume that measurement
outputs are obtained from sensors that are centrally located.

As the size and complexity of systems increase, several
practical systems are large-scale and/or physically output dis-
tributed. For these systems, some fault diagnosis approaches
have been proposed in the literature. For example, in [10],
a robust centralized fault estimation method based on the
sliding mode observer technique was proposed for multi-
agent system exchanging relative information. Considering
probabilistic performance, an FDI filter was designed for
high dimensional nonlinear systems in [11]. We note that
the fault diagnosis and fault estimation schemes proposed
in the above literature are still in a centralized form. Some
research on decentralized or distributed FDI was carried
out in the literature as well [12], [13], [14]. In [15] fault
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Fig. 1. Framework of distributed fault detection observer

tolerant decentralized H∞ control for symmetric composite
systems was presented. In [16], a decentralized FDI scheme
was studied for a network system. A multi-layer distribut-
ed FDI scheme was proposed for large-scale systems in
[17]. In addition, a distributed fault detection approach for
interconnected second-order systems was studied in [18].
The monitored plant discussed in the above literature can
be separated into several interconnected subsystems. Each
fault filter or observer is designed for the corresponding
subsystem. For large-scale systems that do not physically
consist of some subsystems or can not be separated into
several interconnected subsystems, distributed fault diagnosis
was studied only in few publications. For a single monitored
discrete-time system, a distributed fault diagnosis algorithm
was proposed by using average-consensus techniques in [19].

Motivated by the above, this paper studies the distribut-
ed fault detection problem for continuous-time linear time
invariant (LTI) systems with actuator faults. The measured
output of the original plant is physically distributed and
the proposed distributed fault detection observer (DFDO)
consists of a network of local fault detection observers with
a priori given network graph (see Fig. 1 for an illustration).
Each local fault detection observer has access to only a
portion of the output of the known monitored system, and
communicates with its neighboring fault detection observers.
The local fault detection observer at each node is designed
to generate a residual which is robust against process dis-
turbances. The gain matrices in the DFDO are obtained by
solving linear matrix inequalities (LMI’s). In this paper, the
residual generation and residual threshold calculation are
integrated together by using L∞ analysis.
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II. PRELIMINARIES AND PROBLEM FORMULATION

A. Preliminaries

Notation: For a given matrix M, its transpose is denoted by
MT and M−1 denotes its inverse. The symmetric part of a
square real matrix M is sometimes denoted by Sym(M) :=
M+MT . The rank of the matrix M is denoted by rank M. The
identity matrix of dimension N will be denoted by IN . The
vector 1N denotes the N×1 column vector comprising of all
ones. For a symmetric matrix P, P > 0 (P < 0) means that
P is positive (negative) definite. For a set {A1,A2, · · · ,AN}
of matrices, we use diag{A1,A2, · · · ,AN} to denote the block
diagonal matrix with the Ai’s along the diagonal, and the ma-
trix

[
AT

1 AT
2 · · · AT

N
]T is denoted by col(A1,A2, · · · ,AN).

The Kronecker product of the matrices M1 and M2 is denoted
by M1 ⊗M2. For a linear map A : X → Y , ker A := {x ∈
X |Ax = 0} and im A := {Ax|x ∈ X } will denote the kernel
and image of A, respectively. For a real inner product space
X , if V is a subspace of X , then V ⊥ will denote the
orthogonal complement of V . For a signal x(t) ∈ Rn, its
L∞ norm is defined as ∥x∥∞ = supt>0 ∥x(t)∥, where ∥x(t)∥
denotes the Euclidean norm of x(t), i.e. ∥x(t)∥=

√
xT (t)x(t).

In this paper, a weighted directed graph is denoted
by G = (N ,E ,A ), where N = {1,2, · · · ,N} is a finite
nonempty set of nodes, E ⊂ N ×N is an edge set of
ordered pairs of nodes, and A = [ai j] ∈ RN×N denotes
the adjacency matrix. The ( j, i)-th entry a ji is the weight
associated with the edge (i, j). We have a ji ̸= 0 if and only
if (i, j)∈ E . Otherwise a ji = 0. An edge (i, j)∈ E designates
that the information flows from node i to node j. A graph
is said to be undirected if it has the property that (i, j) ∈ E
implies ( j, i) ∈ E for all i, j ∈ N . We will assume that the
graph is simple, i.e., aii = 0 for all i ∈N . For an edge (i, j),
node i is called the parent node, node j the child node and
j is a neighbor of i. A directed path from node i1 to il is a
sequence of edges (ik, ik+1), k = 1,2, · · · , l −1 in the graph.
A directed graph G is strongly connected if between any pair
of distinct nodes i and j in G , there exists a directed path
from i to j, i, j ∈ N .

The Laplacian L = [li j] ∈ RN×N of G is defined as
L := D −A , where the i-th diagonal entry of the diagonal
matrix D is given by di = ∑N

j=1 ai j. By construction, L has
a zero eigenvalue with a corresponding eigenvector 1N (i.e.,
L 1N = 0N), and if the graph is strongly connected, all the
other eigenvalues lie in the open right-half complex plane.

For strongly connected graphs G , we review the following
lemma.
Lemma 1. [20], [21], [22] Assume G is a strongly connected
directed graph. Then there exists a unique positive row vector
r =

[
r1, · · · ,rN

]
such that rL = 0 and r1N = N. Define R :=

diag{r1, · · · ,rN}. Then L̂ := RL +L T R is positive semi-
definite, 1T

NL̂ = 0 and L̂ 1N = 0.
We note that RL is the Laplacian of the balanced digraph

obtained by adjusting the weights in the original graph. The
matrix L̂ is the Laplacian of the undirected graph obtained
by taking the union of the edges and their reversed edges
in this balanced digraph. This undirected graph is called the

mirror of this balanced graph [20].

B. Problem formulation

In this paper, we consider a continuous-time LTI system
subject to actuator faults and disturbances represented by{

ẋ = Ax+Bu+F f +Ed
y =Cx (1)

where x ∈ Rn is the state, u ∈ Rr is the input, f ∈ Rq

is the fault, d ∈ Rl is the disturbance, and y ∈ Rm is the
measurement output. A ∈ Rn×n,B ∈ Rn×r,F ∈ Rn×q,E ∈
Rn×l ,C ∈ Rm×n are known constant matrices with appropri-
ate dimensions. We assume that d is unknown but bounded,
and that ∥d∥∞ is a known constant. We partition the output
y as y = col(y1, · · · ,yN), where yi ∈ Rmi and ∑N

i=1 mi = m.
Accordingly, C = col(C1, · · · ,CN) with Ci ∈Rmi×n. Here, the
portion yi =Cix ∈Rmi is assumed to be the only information
that can be acquired by node i in the DFDO.

In this paper, a standing assumption will be that the
communication graph is a strongly connected directed graph.
We will also assume that the pair (C,A) is observable.
However, (Ci,A) is not necessarily observable or detectable.

We will design a DFDO for the system given by (1) with
the given communication network. The DFDO will consist of
N local fault detection observers, and the local fault detection
observer at node i has the following dynamics

˙̂xi = Ax̂i +Li(yi −Cix̂i)+Bu
+γriMi ∑N

j=1 ai j(x̂ j − x̂i)

hi = yi −Cix̂i

, i ∈ N (2)

where x̂i ∈ Rn is the state of the local observer at node i,
hi ∈ Rm

i is the residual of the local fault detection observer
at node i, ai j is the (i, j)-th entry of the adjacency matrix A
of the given network, ri is defined as in Lemma 1, γ ∈R is a
coupling gain to be designed, and Li ∈Rn×mi and Mi ∈Rn×n

are gain matrices to be designed.
To analyze and synthesize observer (2), we define the local

estimation error of the i-th observer as

ei := x̂i − x. (3)

By combining (1) and (2) we find that the error of the i-th
local fault detection observer is represented by

ėi = (A−LiCi)ei −Ed −F f
+γriMi ∑N

j=1 ai j(e j − ei)

hi = Ciei

, i ∈ N . (4)

Let e := col(e1,e2, · · · ,eN) be the joint vector of errors and
d̃ := 1N ⊗ d be the extended disturbance vector. Then we
obtain the global error system{

ė = Λe− γM(RL ⊗ In)e− Ẽd̃ − F̃ f ,
hi =Ciei, i ∈ N .

(5)

where
Λ = diag{A−L1C1, · · · ,A−LNCN},

M = diag{M1, · · · ,MN},

Ẽ = IN ⊗E, F̃ = 1N ⊗F,
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and R is as defined in Lemma 1. It is noted that d̃ is bounded
since d is bounded.

Here, we will discuss how to design gain matrices for the
DFDO (2) so that error system (5) is internally stable while
attenuating the effect of the extended disturbance signal on
the residual. More specifically, we want to design a DFDO
such that the following specifications hold:
(i) The error system (5) is internally stable, i.e., it is

asymptotically stable if the extended disturbance vector
d̃ and the fault f are zero.

(ii) In fault-free condition, the error system (5) satisfies a
given L∞ performance level βi > 0, i ∈ N , i.e., fot all
t > 0

∥hi(t)∥6 βi

√
V (0)e−αt +N∥d∥2

∞ (6)

where V (0) = e(0)T Pe(0),P > 0 is a positive definite
matrix to be specified, α > 0 is a given positive scalar
and N is the number of nodes.

Since (Ci,A) is not necessarily observable or detectable, Li
cannot be designed using any classical method directly. We
use an orthogonal transformation that yields an observability
decomposition for the pair (Ci,A). For i ∈ N , let Ti be an
orthogonal matrix, i.e., a square matrix such that TiT T

i = In,
such that the matrices A and Ci are transformed by the state
space transformation Ti into the form

T T
i ATi =

[
Aio 0
Air Aiu

]
, CiTi =

[
Cio 0

]
, T T

i E =

[
Eio
Eiu

]
(7)

where Cio ∈ Rpi×vi , Aio ∈ Rvi×vi , Air ∈ R(n−vi)×vi , Aiu ∈
R(n−vi)×(n−vi), and n−vi is the dimension of the unobservable
subspace of the pair (Ci,A). Clearly, by construction, the
pair (Cio,Aio) is observable. In addition, if we partition Ti =[
Ti1 Ti2

]
, where Ti1 consists of the first vi columns of Ti,

then the unobservable subspace is given by im Ti2 = ker Oi,
where Oi = col(Ci,CiA, · · · ,CiAn−1). Note that im Ti1 =
(ker Oi)

⊥.

III. MAIN RESULTS

A. Distributed fault detection observer design

In this part, we study the DFDO design. Before presenting
the main design procedure, we state the following lemmas
based on Lemma 1. Our first lemma is as follows:
Lemma 2.[23] For a strongly connected directed graph G ,
zero is a simple eigenvalue of L̂ = RL +L T R introduced
in Lemma 1. Furthermore, its eigenvalues can be ordered as
λ1 = 0 < λ2 6 λ3 6 · · · 6 λN . Furthermore, there exists an
orthogonal matrix U =

[
1√
N

1N U2

]
, where U2 ∈RN×(N−1),

such that UT (RL +L T R)U = diag{0,λ2, · · · ,λN}.
Our second lemma was proven in [24]. The statement of

the lemma is as follows:
Lemma 3. Let L be the Laplacian matrix associated with the
strongly connected directed graph G . For all gi > 0, i ∈ N ,
there exists ε > 0 such that

T T (L̂ ⊗ In)T +G > εInN , (8)

where T = diag{T1, · · · ,TN}, L̂ is defined as in Lemma 1,

G = diag{G1, · · · ,GN}, and Gi =

[
giIvi 0

0 0n−vi

]
, i ∈ N .

The following theorem now deals with the existence of a
DFDO of the form (2) that satisfies (i) and (ii). A condition
for its existence is expressed in terms of solvability of an
LMI. Solutions to the LMIs yield required gain matrices.
Let ri > 0, i ∈ N , be as in Lemma 1. Let gi > 0, i ∈ N ,
and ε > 0 be such that (8) holds. Finally, let γ ∈R. We have
the following:
Theorem 4 Given α > 0 and βi > 0, there exist gain matrices
Li and Mi, i ∈ N , such that the DFDO (2) satisfies the
specifications (i) and (ii) if there exist a positive scalar
γ > 0 and positive definite matrices Pio ∈ Rvi×vi ,Pio > 0,
Piu ∈ R(n−vi)×(n−vi),Piu > 0, and a matrix Wi ∈ Rvi×pi such
that Ψ11i Ψ12i Ψ13i

⋆ Ψ22i Ψ23i
⋆ ⋆ Ψ33i

< 0, ∀i ∈ N , (9)

CT
ioCio −β 2

i Pio < 0 (10)

where
Ψ11i = PioAio +AT

ioPio −WiCio −CT
ioW T

i +αPio + γgiIvi

− γεIvi ,
Ψ12i = AT

irPiu,
Ψ13i = PioEio,
Ψ22i = Sym(PiuAiu)− γεInq−vi +αPiu,
Ψ23i = PiuEiu,
Ψ33i =−αiIl ,
and Eio,Eiu are defined in (7). In that case, the gain matrices
in the distributed observer (2) can be taken as

Li := Ti

[
Lio
0

]
, Mi := Ti

[
P−1

io 0
0 P−1

iu

]
T T

i , (11)

where Lio = P−1
io Wi, i ∈ N .

Proof: Choose a candidate Lyapunov function for the
error system (5)

V (e1, · · · ,eN) :=
N

∑
i=1

eT
i Piei, (12)

where Pi := Ti

[
Pio 0
0 Piu

]
T T

i . Clearly then Pi > 0.

The time-derivative of V is

V̇ (e) =eT (PΛ+ΛT P)e+ eT PẼd̃ + d̃T ẼT Pe

− γeT (PM(RL ⊗ In)+(L T R⊗ In)M
T P)e

(13)

where P = diag{P1, · · · ,PN}. Since the matrix Mi in (11) is
chosen as Mi = P−1

i , we have M = P−1. Hence, the time-
derivative of V becomes

V̇ (e)= eT (PΛ+ΛT P−γL̂ ⊗In)e+eT PẼd̃+ d̃T ẼT Pe, (14)

where, as before, L̂ = RL +L T R.
On the other hand, from (9) and (8) in Lemma 3, we obtain[
diag{Q1, · · · ,QN}−T T γ(L̂ ⊗ In)T T T PẼ

ẼT PT −αINl

]
< 0, (15)
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where
Qi =

[
Φi AT

irPiu
PiuAir PiuAiu +AT

iuPiu +2αPiu

]
, i ∈ N ,

with Φi := PioAio +AT
ioPio −WiCio −CT

ioW T
i +αPio.

By taking Lio = P−1
io Wi and pre- and post- multiplying the

inequality (15) with diag{T, INlq} and its transpose, we get[
PΛ+ΛT P− γL̂ ⊗ In PẼ

ẼT P −αINlq

]
< 0, (16)

By pre- and post- multiplying the inequality (16) with [eT d̃T ]
and its transpose, we have

V̇ (e)6−αV (e)+α d̃T (t)d̃(t) (17)

which implies that

V (e(t))6V (0)e−αt +α∥d̃∥2
∞

∫ t

0
e−α(t−τ)dτ

6V (0)e−αt +(1− e−αt)N∥d∥2
∞

6V (0)e−αt +N∥d∥2
∞

(18)

where V (0) = eT (0)Pe(0).
From (10), we have

CT
i Ci −β 2

i Pi < 0 (19)

which implies that

∥hi(t)∥2 6 β 2
i eT

i (t)Piei(t)

6 β 2
i eT (t)Pe(t)

6 β 2
i (V (0)e−αt +N∥d∥2

∞)

(20)

That is, L∞ performance index (6) is satisfied. Therefore,
conditions (i) and (ii) are both satisfied.

B. Distributed fault detection scheme

For the residual evaluation, one of the commonly used
approaches is the so-called threshold method [2]. In this
paper, we adopt the following logical relationship for fault
detection

Hi(t)≤ Hthi(t) ,∀i ∈ N =⇒ fault free
Hi(t)> Hthi(t) ,∃i ∈ N =⇒ fault occurs (21)

where the residual evaluation function at each node is defined
as the 2-norm of the vector hi, namely Hi(t) = ∥hi(t)∥.
Different from the widely-used constant threshold, a time-
varying threshold is obtained by L∞ analysis. Therefore we
adopt the following time-varying threshold

Hthi(t) = βi

√
λmaxē2

0e−αt +N∥d∥2
∞

where ē0 ∈R denotes the upper bound of ∥e(0)∥, λmax is the
maximum eigenvalue of P ∈Rnx×nx , P > 0 which is obtained
by Theorem 4.

Based on the previous lemmas and theorem we have the
following result:
Let α > 0. We assume that (C,A) is observable and G is

a strongly connected directed graph, then a DFDO (2) that
detects faults and attenuates the effect of the disturbance is
designed using the following algorithm.

Algorithm 1 Distributed fault detection
1: For each i ∈ N , choose an orthogonal matrix Ti such

that

T T
i ATi =

[
Aio 0
Air Aiu

]
,CiTi =

[
Cio 0

]
,T T

i E =

[
Eio
Eiu

]
with (Cio,Aio) observable.

2: Compute the positive row vector r =
[
r1, · · · ,rN

]
such

that rL = 0 and r1N = N.
3: Solve the LMI (8) and get gi, i ∈ N and ε .
4: Solve the LMI’s (9) and (10) for all i ∈ N and get γ ,

Pio, Piu, Wi,βi.
5: Define

Li := Ti

[
P−1

io Wi
0

]
,Mi := Ti

[
P−1

io 0
0 P−1

iu

]
T T

i , i ∈ N

6: Calculate the local residual signal hi at each node i using
local fault detection observer (2).

7: Calculate the local time-varying threshold Hthi.
8: Make the fault detection decision by comparing the

residual evaluation function Hi(t) with time-varying
threshold Hthi(t) at each node i.

Remark 5: In the special case that the communication graph
among the observers is a connected undirected graph, we
have that r = 1T

N is the unique positive row vector such that
rL = 0 and r1N = N. In the design procedure of Algorithm
1, we can then take ri = 1 for all i ∈ N .

IV. SIMULATION EXAMPLE

In this section, we will use a numerical example borrowed
from [25] to illustrate the effectiveness of our approach.

Consider a linear system (1) with coefficient matrices
given by

A =


−1 0 0 0 0 0
−1 1 1 0 0 0
1 −2 −1 −1 1 1
0 0 0 −1 0 0
−8 1 −1 −1 −2 0
4 −0.5 0.5 0 0 −4

 , B = F =


0
0
0
1
0
1

 ,

C =


1 0 0 2 0 0
2 0 0 1 0 0
2 0 1 0 0 1
0 0 0 2 0 0
1 0 2 0 0 0
2 0 4 0 0 0

=


C1
C2
C3
C4

 , E =


0
1
0
1
0
0

.

The communication network is given by the strongly
connected digraph in Fig. 2. The Laplacian of this graph

MTNS 2018, July 16-20, 2018
HKUST, Hong Kong

841



1 4

2 3

Fig. 2. The communication graph among nodes

is given by

L =


2 −1 0 −1
0 1 −1 0
−1 −1 2 0
−1 0 0 1

 .

It can be seen that none of the local systems (Ci,A) is
observable, but (C,A) is an observable pair. We will apply
the conceptual Algorithm 1 to design a distributed observer.
The normalized positive left eigenvector of the Laplacian is
computed to be r =

[
0.8 1.6 0.8 0.8

]
.

We choose α = 8, β1 = 0.0497, β2 = 0.0346, β3 = 0.0387
and β4 = 0.0648. Following Algorithm 1, a coupling gain is
computed to be γ = 0.6087. The local observer gain matrices
are computed as:

L1 =


−6.3380 3.7506

0 0
0 0

0.6528 5.6815
0 0
0 0

 , L2 =


312.5684
−736.9605
−900.7698
808.9113
−943.6320
303.3418

 ,

L3 =


0
0
0

2.0023
0
0

 , L4 =


71.7864 −0.0000

−670.3341 0.0000
−25.2502 0.0000
678.2653 −0.0000
−632.6460 0.0000
144.5728 −0.0000

 ,

M1 =


0.0002 0 0 −0.0001 0 0

0 1 0 0 0 0
0 0 1 0 0 0

−0.0001 0 0 0.0003 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ,

M2 =
0.1900 −0.1974 −0.5356 0.2344 −0.4143 0.1628
−0.1974 0.7994 0.6001 −1.0203 0.7559 −0.2225
−0.5356 0.6001 1.5137 −0.7218 1.1901 −0.4631
0.2344 −1.0203 −0.7218 1.4085 −0.8829 0.2714
−0.4143 0.7559 1.1901 −0.8829 1.1172 −0.3836
0.1628 −0.2225 −0.4631 0.2714 −0.3836 0.1445


,
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Fig. 3. The state components of the observed plant and their estimates
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Fig. 4. The residual evaluation function and its threshold at node 1

M3 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0.0002 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ,

M4 =
0.0502 −0.0529 −0.0245 −0.0264 −0.2237 0.0635
−0.0529 0.6743 0.0204 −0.7865 0.5335 −0.1191
−0.0245 0.0204 0.0121 0.0191 0.1062 −0.0305
−0.0264 −0.7865 0.0191 1.1171 −0.2568 0.0334
−0.2237 0.5335 0.1062 −0.2568 1.1523 −0.3097
0.0635 −0.1191 −0.0305 0.0334 −0.3097 0.0852


.

For our simulation, the disturbance is chosen as random
noise with bound ∥d∥∞ = 0.1. In addition, we take the
following actuator fault:

f (t) =
{

0 0 6 t < 5
5 5 6 t 6 10 (22)

where the time units are seconds.
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Fig. 5. The residual evaluation function and its threshold at node 2
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Fig. 6. The residual evaluation function and its threshold at node 3

In the simulation, the initial state of the observed system is
taken as x(0) =

[
1 3 −2 −3 −1 2

]T . For each local
fault detection observer the initial state is taken to be zero.

The state components and their estimates are depicted in
Fig. 3. It can be seen that all estimates converge to the actual
state components before the fault occurring. Each local fault
detection observer does not track the real state when the
actuator has a fault. Figs. 4-7 show the residual evaluation
functions and their time-varying thresholds associated with
each local fault detection observer. It can be seen that the
residual evaluation functions at nodes 1 and 3 exceed their
thresholds when the fault occurs.

V. CONCLUSIONS

In this paper, we have presented a distributed observer-
based fault detection scheme for LTI systems with a bounded
process disturbance. A network of local fault detection ob-
servers are built at each measurement node. The information
among the local fault detection observers is exchanged by
a known strongly connected directed graph. The local fault
detection observer at each node is designed to detect the
actuator fault of the monitored system. By using L∞ analysis,
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Fig. 7. The residual evaluation function and its threshold at node 4

a bank of LMI’s is presented to calculate the gain matrices
and residual thresholds in our DFDO. Finally, we have
presented a simple algorithm to design a DFDO that achieves
fault detection. In future research, we plan to focus on
distributed fault isolation and accommodation.

REFERENCES

[1] R. Isermann, Fault-diagnosis systems: an introduction from fault
detection to fault tolerance. Springer Science & Business Media,
2006.

[2] S. Ding, Model-based fault diagnosis techniques: design schemes,
algorithms, and tools. Springer Science & Business Media, 2008.

[3] J. Chen and R. J. Patton, Robust model-based fault diagnosis for
dynamic systems. Springer Science & Business Media, 2012.

[4] K. Zhang, B. Jiang, and P. Shi, Observer-based fault estimation and
accomodation for dynamic systems. Springer, 2012, vol. 436.

[5] M. Zhong, S. X. Ding, J. Lam, and H. Wang, “An LMI approach
to design robust fault detection filter for uncertain lti systems,”
Automatica, vol. 39, no. 3, pp. 543–550, 2003.

[6] Z. Gao, C. Cecati, and S. X. Ding, “A survey of fault diagnosis and
fault-tolerant techniquespart I: Fault diagnosis with model-based and
signal-based approaches,” IEEE Transactions on Industrial Electron-
ics, vol. 62, no. 6, pp. 3757–3767, 2015.

[7] H. Li, Y. Gao, P. Shi, and H.-K. Lam, “Observer-based fault detection
for nonlinear systems with sensor fault and limited communication
capacity,” IEEE Transactions on Automatic Control, vol. 61, no. 9,
pp. 2745–2751, 2016.

[8] C.-X. Shi, G.-H. Yang, and X.-J. Li, “Fault detection filter design
with adaptive mechanism for linear uncertain polytopic systems in
finite frequency domains,” IET Control Theory & Applications, vol. 10,
no. 16, pp. 2027–2037, 2016.

[9] Z. Wang, P. Shi, and C.-C. Lim, “H−/H∞ fault detection observer
in finite frequency domain for linear parameter-varying descriptor
systems,” Automatica, vol. 86, pp. 38–45, 2017.

[10] P. P. Menon and C. Edwards, “Robust fault estimation using relative
information in linear multi-agent networks,” IEEE Transactions on
Automatic Control, vol. 59, no. 2, pp. 477–482, 2014.

[11] P. M. Esfahani and J. Lygeros, “A tractable fault detection and isolation
approach for nonlinear systems with probabilistic performance,” IEEE
Transactions on Automatic Control, vol. 61, no. 3, pp. 633–647, 2016.

[12] X. Zhang and Q. Zhang, “Distributed fault diagnosis in a class of
interconnected nonlinear uncertain systems,” International Journal of
Control, vol. 85, no. 11, pp. 1644–1662, 2012.

[13] Y. Li, H. Fang, J. Chen, and C. Shang, “Distributed fault detection
and isolation for multi-agent systems using relative information,” in
Proc. American Control Conference (ACC), Boston, MA, USA, 2016,
pp. 5939–5944.

MTNS 2018, July 16-20, 2018
HKUST, Hong Kong

843



[14] A. Marino, F. Pierri, and F. Arrichiello, “Distributed fault detection
isolation and accommodation for homogeneous networked discrete-
time linear systems,” IEEE Transactions on Automatic Control, vol. 62,
no. 9, pp. 4840–4847, 2017.

[15] S. Huang, J. Lam, G.-H. Yang, and S. Zhang, “Fault tolerant decentral-
ized H∞ control for symmetric composite systems,” IEEE Transactions
on Automatic Control, vol. 44, no. 11, pp. 2108–2114, 1999.

[16] D. Sauter, T. Boukhobza, and F. Hamelin, “Decentralized and au-
tonomous design for FDI/FTC of networked control systems,” IFAC
Proceedings Volumes, vol. 39, no. 13, pp. 138–143, 2006.

[17] F. Boem, R. M. Ferrari, C. Keliris, T. Parisini, and M. M. Polycarpou,
“A distributed networked approach for fault detection of large-scale
systems,” IEEE Transactions on Automatic Control, vol. 62, no. 1, pp.
18–33, 2017.

[18] I. Shames, A. M. Teixeira, H. Sandberg, and K. H. Johansson,
“Distributed fault detection for interconnected second-order systems,”
Automatica, vol. 47, no. 12, pp. 2757–2764, 2011.

[19] E. Franco, R. Olfati-Saber, T. Parisini, and M. M. Polycarpou, “Dis-
tributed fault diagnosis using sensor networks and consensus-based
filters,” in The 45th IEEE Conference on Decision and Control, San
Diego, CA, USA, 2006, pp. 386–391.

[20] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks
of agents with switching topology and time-delays,” IEEE Transac-
tions on Automatic Control, vol. 49, no. 9, pp. 1520–1533, 2004.

[21] W. Ren and R. W. Beard, “Consensus seeking in multiagent systems
under dynamically changing interaction topologies,” IEEE Transac-
tions on Automatic Control, vol. 50, no. 5, pp. 655–661, 2005.

[22] W. Yu, G. Chen, M. Cao, and J. Kurths, “Second-order consensus
for multiagent systems with directed topologies and nonlinear dynam-
ics,” IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), vol. 40, no. 3, pp. 881–891, 2010.

[23] Z. Li and Z. Duan, Cooperative control of multi-agent systems: a
consensus region approach. CRC Press, 2014.

[24] W. Han, H. L. Trentelman, Z. Wang, and Y. Shen, “A simple
approach to distributed observer design for linear systems,” DOI:
10.1109/TAC.2018.2828103, 2018.

[25] M. Saif and Y. Guan, “Decentralized state estimation in large-scale
interconnected dynamical systems,” Automatica, vol. 28, no. 1, pp.
215–219, 1992.

MTNS 2018, July 16-20, 2018
HKUST, Hong Kong

844


