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Abstract— In this extended abstract we analyze the funda-
mental performance limitations of feedback and networked
feedback systems by leveraging information-theoretic notions
including entropy and mutual information, as an attempt
towards bridging control theory and information theory. In
particular, we develop Bode-type integrals, power gain bounds,
and variance minimization limits applicable to information-
constrained networked feedback systems, which hold for arbi-
trarily general controllers as long as they are causal and stabi-
lizing. Towards this end, we propose a number of information
measures such as negentropy rate, channel blurredness, and
Gaussianity-whiteness compatible to control system analysis.
We also investigate feedback systems without communication
channels; in particular, we examine the results further in
the context of state estimation. In general, the performance
limitations are seen to be characterized by plant instabili-
ties, channel noisiness, and disturbance Gaussianity-whiteness.
In summary, this abstract presents a unifying information-
theoretic framework for control system limitation analysis,
and consolidates the role of Shannon’s information theory as
a mathematical theory of not only communication but also
control.
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I. INTRODUCTION

Performance limitation [1], [2] is a topic of lasting interest
in the study of feedback design, of which one canonical
objective is to achieve desirable disturbance attenuation prop-
erties. For a linear time-invariant (LTI) system, disturbance
attenuation at different frequencies can be characterized by
the sensitivity function. With different performance indices in
terms of the sensitivity function addressing different design
goals, control performance tradeoffs and limits have been
obtained, e.g., as Bode integrals and under the H∞ criterion.

Due to the various communication constraints present in
the feedback loop, existing performance limitation results
cannot be readily applied to networked feedback systems.
The impact of communication constraints on control perfor-
mance calls for the incorporation of information and com-
munication constraints into performance limitation studies of
feedback control [3].
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Towards this end, [4]–[7] developed Bode-type integrals
using information-theoretic notions such as entropy and
mutual information. In an attempt by the authors [8], [9], the
Bode-type integrals were further strengthened for networked
feedback systems by introducing new information measures,
including negentropy rate and channel blurredness. We also
utilized this framework to derive power gain bounds [9] and
variance minimization limits [10]; for variance minimization,
we proposed the notion of Gaussianity-whiteness to facilitate
the analysis, and further examine the implications of the
limits in the context of state estimation.

II. NOTATIONS AND BASIC CONCEPTS

Throughout this extended abstract, we consider real-valued
continuous zero-mean random variables and vectors, as well
as discrete-time stochastic processes. We denote random
variables and vectors using boldface letters. The logarithm is
defined with base 2, and all the functions are assumed to be
measurable. The definitions and properties of asymptotically
stationarity and asymptotic power spectrum Sx (ω) can be
found in [4], [11], while those of differential entropy h (x),
conditional entropy h (x|y), entropy rate h∞ (x), mutual
information I (x;y), and mutual information rate I∞ (x;y)
can be found in [12].

Negentropy rate [9] is a measure of non-Gaussianity for
asymptotically stationary processes, which generalizes the
notion of negentropy to stochastic processes.

Definition 1: The negentropy of a random variable x ∈ R
with variance σ2

x is defined as

J (x) = log
√
2πeσ2

x − h (x) .

The negentropy rate of an asymptotically stationary process
{xk} ,xk ∈ R with asymptotic power spectrum Sx (ω) is
defined as

J∞ (x) ,
1

2π

∫ π

−π

log
√

2πeSx (ω)dω − h∞ (x) . (1)

It can be shown that J∞ (x) ≥ 0, where the equality holds
if and only if {xk} is asymptotically Gaussian.

Spectral flatness [13] is an important notion for quantify-
ing how flat the power spectral density of an asymptotically
stationary process is, which also provides a measure of how
white such a process is.

Definition 2: The spectral flatness of an asymptotically
stationary process {xk} ,xk ∈ R with asymptotic power
spectrum Sx (ω) is defined as

γ2
x =

2
1
2π

∫ π
−π

log Sx(ω)dω

1
2π

∫ π

−π
Sx (ω) dω

. (2)
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It is known that 0 ≤ γ2
x ≤ 1, and that γ2

x = 1 if and only
if {xk} is asymptotically white.

We now define Gaussianity-whiteness [3] by combining
negentropy rate and spectral flatness in a non-trivial way,
which provides a measure on how close an asymptotically
stationary process is to being purely white Gaussian.

Definition 3: Consider an asymptotically stationary pro-
cess {xk} ,xk ∈ R with spectral flatness γ2

x and negentropy
rate J∞ (x). Its Gaussianity-whiteness is defined as

GWx ,
[
2−2J∞(x)

]
γ2
x. (3)

Since J∞ (x) ≥ 0 and 0 ≤ γ2
x ≤ 1, we have 0 ≤ GWx ≤

1. It is easy to verify that GWx = 1 if and only if {xk} is
asymptotically white Gaussian.

We next introduce the channel blurredness [8]. In contrast
to channel capacity [12], channel blurredness is defined
as the infimum of mutual information (rate) between the
noise and output of a channel, and thus lends a more direct
relationship between the channel noise and channel output.

Definition 4: Consider a general causal noisy channel
with input process {vk}, noise process {nk}, and output
process {uk}. Then, the blurredness of the channel, mea-
sured in bits, is defined as

B , inf
pv

I∞ (n;u) = inf
pv

lim sup
k→∞

I (n0,...,k;u0,...,k)

k + 1
, (4)

where the infimum is taken over all possible densities pv of
the input distributions allowed for the channel.

For a number of well-known noisy channel models, the
channel blurredness may be evaluated analytically. A no-
table example is the classical additive white Gaussian noise
(AWGN) channel, for which uk = vk+nk, where the noise
{nk} is a zero-mean white Gaussian process, and {nk} and
{vk} are assumed to be independent. We impose a power
constraint in the form

lim
k→∞

E
∑k

i=0 v
2
i

k + 1
≤ P.

For simplicity, we denote this constraint by Ev2 ≤ P .
The following proposition presents the channel blurred-

ness of an AWGN channel [9].
Proposition 1: The channel blurredness of an AWGN

channel with noise variance N and power constraint Ev2 ≤
P is given by

B =
1

2
log

(
1 +

N

P

)
. (5)

It is well known that the channel capacity of the AWGN
channel is given by [12]

C = max
pv: Ev2≤P

I (v;u) =
1

2
log

(
1 +

P

N

)
.

Thus, for an AWGN channel, an explicit relationship can
be established between channel blurredness and channel
capacity, found as

B =
1

2
log

(
1 +

1

22C − 1

)
. (6)
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Fig. 1. A feedback system over an uplink noisy channel.

Clearly, when interpreted in the sense of channel capacity,
the channel blurredness serves as a measure of poorness on
the channel’s quality.

For more sophisticated channels, however, no direct rela-
tionship may exist between channel blurredness and channel
capacity. As such, the role of one cannot be superseded by
the other. See [3] for a more detailed discussion.

We say that an asymptotically stationary process {xk} is a
power signal if Rx (k) is finite for any integer k and Sx (ω)
exists. For a power signal {xk}, the power norm can be
defined as

pow (x) =

√
1

2π

∫ π

−π

Sx (ω) dω =
√
Rx (0).

Note that pow (x) is a semi-norm.
We next introduce the power gain [9]. As the system gain

induced by power signals, power gain represents the largest
power amplification ratio from a system’s input to output.

Definition 5: Consider a causal system F . Let its input
process {xk} be a power signal. If the output process {yk}
is also a power signal, then the power gain of the system
from {xk} to {yk} is defined as

PG(F) , sup
pow(x) 6=0

pow (y)

pow (x)
. (7)

Power gain defines a viable theoretical notion with tangi-
ble practical relevance for a wide variety of systems. Indeed,
it is a standard engineering practice to measure and use a
system’s input/output spectra for performance assessment.
For a stable LTI system F with transfer function F (z), it is
known that the power gain coincides with the H∞ norm of
the system,

PG(F) = ‖F (z)‖∞ = sup
ω

∣∣F (ejω)∣∣ , (8)

which is a well-established measure of performance.

III. PERFORMANCE LIMITATIONS

A. Networked Feedback Systems

Consider the system in Fig. 1. The plant P is an LTI
system with state-space model given by[

xk+1

yk

]
=

[
A B
C 0

] [
xk

ek

]
, (9)

where xk ∈ Rm is the state, ek ∈ R is the control input,
and yk ∈ R the plant’s output. The system matrices are
A ∈ Rm×m,B ∈ Rm×1, and C ∈ R1×m. The initial state
x0 is a random vector with a finite entropy h (x0). The
controller K is assumed to be causal. We say that K stabilizes
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P if supk E
[
xT
k xk

]
< ∞; that is, the closed-loop system is

mean-square stable. The channel is assumed to be a general
causal noisy channel with input {vk}, noise {nk}, and output
{uk}. The encoder E and the decoder D are also assumed to
be causal. Furthermore, we assume that {nk} , {dk} ,v0,x0

are mutually independent.
Our first main result is a Bode-type integral [9] that

characterizes the trade-off of disturbance attenuation.
Theorem 1: Consider the system in Fig. 1. Suppose that

{dk} and {ek} are asymptotically stationary, and that
h (d0,...,k) / (k + 1) converges as k → ∞. If the controller
K stabilizes the plant P , then

1

2π

∫ π

−π

log

√
Se (ω)

Sd (ω)
dω ≥ J∞ (e)− J∞ (d) + I∞ (n; e)

+

m∑
i=1

max {0, log |λi (A)|} ,

(10)

where Sd (ω) and Se (ω) are the asymptotic power spectra
of {dk} and {ek} respectively, and λi (A) , i = 1, . . . ,m,
denote the eigenvalues of matrix A.

In the integral inequality (10), the term J∞ (e)− J∞ (d)
quantifies the effect of non-Gaussian disturbance signals.
When {dk} is Gaussian, we have J∞ (e) − J∞ (d) ≥ 0.
Ignoring the noise effect further, that is, by discarding the
term I∞ (n; e) ≥ 0, the inequality (10) is weakened to

1

2π

∫ π

−π

log

√
Se (ω)

Sd (ω)
dω ≥

m∑
i=1

max {0, log |λi (A)|} ,

which gives the same result as that of [4] for systems without
communication channels.

In the presence of a communication channel and under the
assumption of a Gaussian disturbance {dk}, however, it was
shown in [5], modulo to some additional assumptions, that

1

2π

∫ π

−π

min

{
0, log

√
Se (ω)

Sd (ω)

}
dω

≥
m∑
i=1

max {0, log |λi (A)|} − Cf , (11)

where Cf is the feedback capacity of the channel with one-
step delay feedback. In particular, for an AWGN channel
with one-step delay feedback, it can be shown that Cf

coincides with the capacity C of the AWGN channel [12].
Under this circumstance, as noted in [14], the inequality (11)
implies that disturbance attenuation can only be achieved
under the condition

Cf >

m∑
i=1

max {0, log |λi (A)|} ,

that is, the capacity exceeds that required for feedback
stabilization. The present integral inequality (10) goes further
to show that when this is the case, the level of disturbance
attenuation is constrained by a number of factors depending

on the Gaussianity of the disturbance signal, the channel
noise effect, and the plant unstable poles.

Our following result presents a bound on power reduction
[9], which characterizes the fundamental limit in disturbance
attenuation of noisy networked feedback systems under
power measure.

Theorem 2: Consider the system in Fig. 1. Let Tde be the
system from {dk} to {ek}. Suppose that {dk} and {ek}
are power signals, and that h (d0,...,k) / (k + 1) converges
as k → ∞. Furthermore, suppose that the decoder D is
injective. If K stabilizes P , then

PG(Tde) ≥ 2B
m∏
i=1

max {1, |λi (A)|} . (12)

In particular, if the channel is an AWGN channel with noise
variance N , power constraint P , and channel capacity C,
then

PG(Tde) ≥

(√
1 +

N

P

)
m∏
i=1

max {1, |λi (A)|} ,

=

√ 22C

22C − 1

 m∏
i=1

max {1, |λi (A)|} . (13)

It is of interest to see that in (12) the channel noise has a
particularly notable effect, which grows exponentially with
the channel blurredness. When specialized to an AWGN
channel, the lower bound can be interpreted in terms of
the signal-to-noise ratio (SNR) of the channel. It can be
seen from (13) that as the SNR P/N increases, the lower
bound decreases. In the limit, when the SNR → ∞, the
lower bound approaches

∏m
i=1 max {1, |λi (A)|}, i.e., the

same lower bound corresponding to a noiseless channel.
In comparison, for a conventional LTI system without a

communication channel, shown, e.g., in Fig. 2, the system
Tde corresponds to the sensitivity function

S (z) =
1

1 + P (z)K (z)
,

where P (z) and K (z) are the transfer functions of the
plant and the controller, respectively. In this case, under the
condition that the closed-loop system is stable, the power
gain coincides with the H∞ norm. It is well known [15]
that when the open-loop transfer function is strictly proper,

‖S (z)‖∞ ≥
m∏
i=1

max {1, |λi|} , (14)

where λi, i = 1, . . . ,m, denote the poles of P (z)K (z).

B. Limits of the Feedback Mechanism

We now investigate performance bounds in variance min-
imization of general feedback systems. Consider the sys-
tem in Fig. 2. Herein, all signals take scalar values as
dk, ek, zk,yk ∈ R. Assume that the plant P is a strictly
causal mapping, i.e., yk = Pk (e0,...,k−1), for any k ∈ N.
Moreover, the controller K is assumed to be causal, i.e.,
zk = Kk (y0,...,k). Furthermore, {dk} and z0 are assumed
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Fig. 2. A general feedback system.

to be independent. Note that if the plant is not strictly causal,
then the controller should be assumed strictly causal so as
to ensure the strict causality of the open-loop system, thus
preventing {dk} and z0 from being dependent.

The following theorem [10] exhibits that the asymptotic
variance of the error is lower bounded by that of the
disturbance, where the gain is found to be the Gaussianity-
whiteness of the disturbance.

Theorem 3: Consider the general feedback system in
Fig. 2. Suppose that {dk} and {ek} are asymptotically
stationary. Then,

lim
k→∞

E
[
e2k
]
≥ GWd lim

k→∞
E
[
d2
k

]
. (15)

Note that Theorem 3 is a very general result that holds for
broad classes of feedback systems as long as the open-loop
systems are strictly causal.

We next examine fundamental performance limitations
of state estimation systems based on the bound given by
(15). The results explicitly quantify how the estimation error
is inherently bounded by the system and noise properties.
Consider the estimation system depicted in Fig. 3. Herein,
the system to be estimated can possibly be nonlinear and
time varying with its state-space model given by{

xk+1 = fk (xk) +wk,
yk = hk (xk) + vk,

where xk ∈ Rm is the state to be estimated, yk ∈ R is the
system output, wk ∈ Rm is the process noise, and vk ∈ R is
the measurement noise. In general, {wk} and {vk} are not
necessarily white Gaussian. We employ the state estimator
based on the state-space model of the system. Specifically,
the estimator is given by

xk+1 = fk (xk) + uk,
yk = hk (xk) ,
ek = yk − yk,
uk = Kk (e0,...,k) ,

where xk ∈ Rm,yk ∈ R, ek ∈ R,uk ∈ Rm. Herein, the
innovation {ek} is processed by a general causal estimator
Kk (·).

The next theorem [10] manifests the intrinsic limits of
estimation systems in terms of variance minimization.

Theorem 4: Consider the system in Fig. 3. Suppose that
{yk} and {ek} are asymptotically stationary. Then,

lim
k→∞

E
[
e2k
]
≥ GWy lim

k→∞
E
[
y2
k

]
. (16)

Theorem 4 shows that the variance of estimation error is
lower bounded by the Gaussian-whiteness and variance of
system output {yk}.

_
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Fig. 3. A general state estimation system.

IV. CONCLUSION

This extended abstract presents a unifying information-
theoretic framework to analyze the design limits and trade-
offs imposed by communication channels on feedback con-
trol performance. This abstract also provides a cohesive treat-
ment of performance limitation issues of generic feedback
systems via an information-theoretic approach.
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