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Abstract— In this paper, we propose a stochastic mirror
descent algorithm for solving distributed convex optimization
problem over a distributed time-varying network. We adopt
Bregman divergence rather than Euclidean distance as the
augmented distance measuring function to solve the distributed
onvex optimization problem. With a fixed step-size, we analyze
the convergence rate of our algorithm, which is also the best
known convergence rate for distributed first-order algorithms.

Index Terms— Distributed convex optimization, mirror de-
scent, time-varying network, convergence rate

I. INTRODUCTION

CUrrently, many optimization problems in data science
(for instance, machine learning, data mining and statis-

tics) include an increasing scale of data, which can hardly
be handled through a single processor or a center. Still, the
conventional parallel optimization in a network also requires
a central unit to collect all the network data and then assign
jobs to the full network. This urges the development of
distributed designs and algorithms for multi-agent network,
based on local computation and neighborhood communi-
cation in many areas, including sensor networks [1], [2],
machine learning [3], [4] and power systems [5], [6].

Over the past years, there has been a considerable work
on distributed convex optimization, including distributed
projected subgradient method [1], [7], [8], distributed primal-
dual subgradient method [9]–[11], and distributed ADMM
method [12], [13]. These algorithms only need first-order
subgradient information of the objective function and the
Euclidean projection to the local constrained set, which can
be applied to large-scale optimization problems. However,
the aforementioned algorithms are based on Euclidean pro-
jection, provided that the local projections can be easily
computed.

In these Euclidean projection cases, the local constraints
sets can only be described by simple sets, such as hy-
perplanes, balls, bounded constraints, etc. Mirror descent
algorithms based on Bregman divergence [14], [15] were
developed to solve optimization problems with complex
constraints sets. For example, [16], [17] studied the dis-
tributed convex optimization algorithms that use the mir-
ror descent technologies. However, these algorithms are
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established with diminishing step-sizes. Additionally, [16]
provided only asymptotic convergence results for distributed
convex optimization, while [17] investigated the convergence
rate of the proposed algorithm for distributed strongly convex
cases.

The objective of this paper is to collectively solve the fol-
lowing distributed general (non-differentiable) convex prob-
lem:

min F (x) =

m∑
i=1

fi(x)

s. t. x ∈ X = ∩mi=1Xi (1)

where fi is the non-differentiable local objective function of
agent i and Xi ∈ Rn is the local closed convex constraint
set known only by agent i. Here, the intersection X of Xis is
non-empty, and agents can communicate over a given time-
varying network.

With this background, we develop a distributed mirror
descent algorithm based on Bregman divergence and more-
over, analyze the convergence rate of distributed mirror
descent algorithm for distributed optimization problem (1).
The contributions of this paper are summarized as follows:
• We propose a distributed stochastic mirror descent al-

gorithm in this paper, which is intended to minimize the
distance between primal and dual spaces of problem (1)
in an infinite dimensional setting using non-Euclidean
distance. Our algorithm is a generalization and sim-
plification to traditional Euclidean based distributed
algorithms in the cases that the local constraint set are
complex, like the unit simplex as an example or the
cases that the distance is defined in the non-Euclidean
sense, like the Kullback-Leibler (KL) divergence widely
used in the measurement of the distance between two
probability distributions.

• Convergence rate is given to distributed stochastic mir-
ror descent algorithm intended to solve a distributed
convex optimization problem with local constraint sets.
We show that, for a total number of T iterations, the
algorithm achieves an O( 1

T ) convergence rate with an
error bound for fixed step-size, noting that [16] only
provided convergence results for the same problem and
[17] provided an O( 1

T ) convergence rate for solving
distributed strongly convex optimization with global
constraint sets known to all the agents.

• Our proposed algorithm recovers the best known con-
vergence rate for algorithms with fixed step-size ( [18],
[13]) with an error bound in solving problem (1) over
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a time-varying network. We also provided the conver-
gence results of our algorithm to a fixed bound, where
the result in [18] becomes a special case where the
measuring function is the Euclidean divergence without
constraint sets.

The rest of the paper is as follows. In Section II, we es-
tablish mathematical preliminaries and propose assumptions
of this paper. Next, a Distributed Stochastic Mirror Descent
Algorithm is proposed to solve the distributed convex prob-
lem (1) and we give the basis convergence rate analysis is
given for the proposed algorithm.in Section III. Section IV
concludes the paper.

II. PRELIMINARIES AND ASSUMPTIONS

A. Graph Theory

Consider a directed graph G(k) = (M, E(k),W (k)),
where M = {1, 2, . . . ,m} represents the agent set, E(k)
stands for the set of activated communication links between
the agents at time k, and W (k) = [wkij ]ij represents the
communication pattern at time k. We make the following
assumption on G(k) = (M, E(k),W (k)) [18]:

Assumption 2.1: The graph G(k) satisfies:
(a) There exists a constant c with 0 < c < 1 such that,
∀k > 0 and ∀i, j, wkii > c; wkij > c if (j, i) ∈ E(k).

(b) W (k) is doubly stochastic, i. e.
∑m
i=1 w

k
ij = 1 and∑m

j=1 w
k
ij = 1.

(c) There is an integer κ > 1 such that ∀k > 0 and ∀(j, i) ∈
M×M,

(j, i) ∈ E(k) ∪ E(k + 1) ∪ · · · ∪ E(k + κ− 1).

B. Convex Theory

We introduce the definition and properties of subgradient
and strongly convex function according to [19].

Define Of(x) ∈ Rn as the subgradient of a (non-
differentiable) convex function f(x) : Rn → R at a
given vector x :∈ dom(f) ∈ Rn. Then Of(x2) ∈ Rn is
the subgradient of the function f(x) at x2 when for any
x1, x2 ∈ dom(f) the following inequality holds:

f(x1)− f(x2)− 〈Of(x2), x1 − x2〉 > 0. (2)

A differentiable function f : Rn → R is called σ-strongly
convex on Rn if, for any x1, x2 ∈ Rn, the subgradient Of(·)
of f(·) satisfies

f(x2) > f(x1) + 〈Of(x1), x2 − x1〉+
1

2
σ||x2 − x1||22,

(3)

where µ is a constant.
Next, we give the definition of the Bregman divergence,

which is used in mirror descent designs.
Definition 2.1: (Bregman divergence [14]) Given a

strongly convex and differentiable funcion φ : Rn → R. We
define the Bregman divergence B(·, ·) introduced by function
φ as:

B(x, z) = φ(x)− φ(z)− 〈Oφ(z), x− z〉 > 0.

We make the following assumption on Bregman divergence:
Assumption 2.2: (a) φ is σφ-strongly convex with re-

spect to Euclidean norm, where for any two point
x1, x2 ∈ Rn:

φ(x2) > φ(x1) + 〈Oφ(x1), x2 − x1〉+
1

2
σφ||x2 − x1||22,

or equally,

〈Oφ(x1), x2 − x1〉 > σφ||x2 − x1||22.

(b) The Bregman divergence B(x1, x2) is convex in x1 for
fixed x2.

Moreover, the following assumption holds for every fi:
Assumption 2.3: (a) fi(·) is a convex function for any
i = 1, 2, . . . ,m.

(b) For any x ∈ dom(fi), the stochastic subgradient di of
fi satisfies:

||di(x)||2 6 G, ∀i.
All the assumptions are widely used in the literature.

III. DISTRIBUTED ALGORITHM AND MAIN RESULTS

The Distributed Stochastic Mirror Descent Algorithm is
given in Algorithm 1. Then we analyze the disagreement
between agents in the network and also the convergence rate
of Algorithm 1.

Algorithm 1 Distributed Stochastic Mirror Descent Al-
gorithm
Input: Total numbers of iteration T , fixed step-size ηi for

each agent i
Initialize: x1i ∈ Xi for all i = 1, 2, . . .m.

1: for k = 1, 1, . . . T do
2: Get a random subgradient dki such that

E[dki ] = Ofi(xki ) where Ofi(xki ) is the subgradient of
fi at xki .

3: Mirror Descent Step:

vki = arg min
vi∈Xi

{
〈vi, dki 〉+

1

ηi
B(vi, x

k
i )

}
. (4)

4: Weighted Step:

xk+1
i =

N∑
i=1

wkijv
k
j . (5)

5: end for

Remark 3.1: The selection of dki :
(a)

di(k) = Ofi(x
k
i ) + εki ,

where εki is chosen to be martingale-difference se-
quences or white Gaussian noise with zero-means.

(b) Each agent has access to a stream of data subsets:

xij , j = 1, 2 . . . p, and Ofi(xki ) =
1

p

∑p
j=1 Ofi(x

k
ij).

In this case, we can randomly choose q ∈ {1, 2 . . . , p},
such that di(k) = Ofi(xkiq).
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Define Φ(k, t) = W (k)W (k−1) · · ·W (t) as the transition
matrices of W (·) for all k > t > 0.

Lemma 3.1: With Assumption 2.1, for any i, j and all
k > t > 0, we have |[Φ(k, t)]ij − 1

m | 6 αβk−t+1, where
α = (1− c

4m2 )−2 and β = (1− c
4m2 )

1
κ .

Define ski = arg minxi∈Xi

{
〈xi, dki 〉+ 1

ηi
B(xi, v

k
i )

}
−xki

as the error between vki and xki . The following lemma gives
an expected error bound of ski .

Lemma 3.2: Let Assumptions 2.1 2.2, and 2.3 hold. For
any i, j ∈M, we have

E||ski ||2 6
ηiG

σφ
.

Proof: According to [Theorem 3.34, [20]], for any xi ∈
Xi, we have

〈xi − vki , ηidki + Oφ(vki )− Oφ(xki )〉 > 0. (6)

According to the doubly stochasticity of the weight matrix
W (k) in Assumption 2.1 and the convexity of Xi, we get
xki ∈ Xi. Thus,

〈vki − xki , ηidki + Oφ(vki )− Oφ(xki )〉 6 0, (7)

With Assumption 2.2, we get

〈ηidki , xki − vki 〉 > 〈Oφ(xki )− Oφ(vki ), xki − vki 〉
> σφ||xki − vki ||22, (8)

This leads to

E||ski ||2 = E||xki − vki ||2
6

ηi
σφ

E||dki ||2

6
ηiG

σφ
, (9)

which completes the proof.
Based on Lemmas 3.1 and 3.2, we establish the disagree-

ment analysis of the Distributed Stochastic Mirror Descent
Algorithm (Algorithm 1) in expectation.

Theorem 3.1: (Disagreement) Let Assumption 2.1, 2.2
and 2.3 hold. Then for any i, j ∈M, we have

1

T

T∑
k=1

m∑
i=1

E||xki − xkj ||2 6
B1

T
+B2,

where B1 = (
2αβ

1− β
+ 1)

∑m
i=1 E||x1i ||2, B2 = 2αβm2ηG

σφ(1−β) ,

and η = max{η1, . . . , ηm}.
Proof: According to the definition of ski , we get

vki = xki + ski . (10)

Define x̄k = 1
m

∑m
i=1 x

k
i . According to the doubly stochas-

ticity of W (k) in Assumption 2.1, the following equation
holds:

x̄k = x̄k−1 +
1

m

m∑
i=1

ski

= x̄1 +

k∑
i=2

1

m

m∑
i=1

sti. (11)

With a similar analysis,

xki =

m∑
j=1

[Φ(k − 1, 1)]ijx
1
j +

k∑
t=2

m∑
j=1

[Φ(k − 1, t)]ijs
t
j .

(12)

According to Lemmas 3.1 and 3.2,

E||xki − x̄k||2 6
m∑
j=1

|[Φ(k − 1, 1)]ij −
1

m
|E||x1j ||2

+

k∑
t=2

m∑
j=1

|[Φ(k − 1, t)]ij −
1

m
|E||stj ||2

6 αβk−1c1(x) +

k∑
t=2

αβk−t
m∑
j=1

E||stj ||2

6 αβk−1c1(x) +
αmηG

σφ

k∑
t=2

βk−t, (13)

where c1(x) =
∑m
i=1 E||x1i ||2 and η = max{η1, . . . , ηm}.

Summing the preceding inequalities over k = 1, 2 . . . T ,

T∑
k=1

E||xki − xkj ||2 = E||x1i − x1j ||2 +

T∑
k=2

E||xki − xkj ||2

6 c1(x) + 2α

T∑
k=2

βk−1c1(x)

+
2αmηG

σφ

T∑
k=2

k∑
t=2

βk−t

6 (
2αβ

1− β
+ 1)c1(x) +

2αβmTηG

σφ(1− β)
,

(14)

where the last inequality is based on the following argument:

T∑
k=2

k∑
t=2

βk−t 6
T∑
k=2

T∑
t=2

βt 6
βT

1− β
. (15)

Therefore,
T∑
k=1

m∑
i=1

E||xki − xkj ||2

6m(
2αβ

1− β
+ 1)

m∑
i=1

E||x1j ||2 +
2αβm2TηG

σφ(1− β)
, (16)

which completes the proof.
Based on Lemmas 3.2, we then analyse the expected con-

vergence rate of the Distributed Stochastic Mirror Descent
Method Algorithm (Algorithm 1), by showing the expected
convergence of the average point 1

T

∑T
k=1 fi(x

k
i ) to the

optimal point fi(x∗), where x∗ = arg minx∈X
∑m
i=1 fi(x).

Theorem 3.2: With Assumptions 2.1, 2.2 and 2.3(a) for
all i, j ∈M, we have

1

T

T∑
k=1

m∑
i=1

E
[
fi(x

k
i )− fi(x∗)

]
6
B3

T
+B4,
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where B3 = 1
ηi

[
B(x∗, x0i )−B(x∗, xTi )

]
and B4 = ηimG

2

σφ
.

Proof: Through simple proof, we have

〈dki , vki − x∗〉 6
1

ηi

[
B(x∗, xki )−B(vki , x

k
i )−B(x∗, vki )

]
.

(17)

Since fi(·) is convex, we obtain

E
[
fi(x

k
i )− fi(x∗)

]
6 E〈dki , vki − x∗〉+ E〈dki , xki − vki 〉

6
1

ηi

[
B(x∗, xki )−B(vki , x

k
i )−B(x∗, vki )

]
+
ηiG

2

σφ
. (18)

As a result,
m∑
i=1

E
[
fi(x

k
i )− fi(x∗)

]
6

m∑
i=1

1

ηi

[
B(x∗, xki )−B(vki , x

k
i )−B(x∗, vki )

]
+
ηimG

2

σφ
. (19)

By Assumptions 2.1 and 2.2, we conclude that
m∑
i=1

B(x∗, xki ) =

m∑
i=1

B(x∗,

m∑
j=1

wk−1ij vk−1j )

6
m∑
i=1

m∑
j=1

wk−1ij B(x∗, vk−1j )

=

m∑
i=1

B(x∗, vk−1i ). (20)

Therefore,
T∑
k=1

m∑
i=1

1

ηi

[
B(x∗, vk−1i )−B(vki , x

k
i )−B(x∗, vki )

]
6

T∑
k=1

m∑
i=1

1

ηi

[
B(x∗, xk−1i )−B(x∗, xki )

]
=

m∑
i=1

1

ηi

[
B(x∗, x0i )−B(x∗, xTi )

]
(21)

Thus,

1

T

T∑
k=1

m∑
i=1

[
fi(x

k
i )− fi(x∗)

]
6

1

T

m∑
i=1

1

ηi

[
B(x∗, x0i )−B(x∗, xTi )

]
+
ηimG

2

σφ

=O(
1

T
) +

ηimG
2

σφ
. (22)

Remark 3.2: According to Theorem 3.2, as T → ∞, the
algorithm converges to a set with a fixed bound, which is
consistent with the results in [18] for fixed step-size and
without constraint sets.

IV. CONCLUSIONS

In this paper, we studied a distributed general convex
problem over a multi-agent network. We have proposed a
Distributed Stochastic Mirror Descent Algorithm with fixed
step-sizes when the objective functions are general (non-
differentiable) convex and the communication topology is
assumed to be time-varying. The algorithm recovers the
best convergence rate with an error bound. Moreover, we
gave some simulation to demonstrate the effectiveness of the
proposed algorithm.
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