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Abstract— In this paper, we study the spectral properties
of directed scale-free networks. First, we study the algebraic
connectivity of a directed scale-free network, which is the
eigenvalue of its Laplacian matrix whose real part is the
second smallest. This is known as an important measure for
the diffusion speed of many diffusion processes over networks
(e.g. consensus, information spreading, epidemics). We also in-
vestigate the eigenvalue of the Laplacian matrix with maximum
real part. We propose an algorithm, extending that of Barabasi
and Albert, to generate directed scale-free networks, and show
by simulations the relations between the spectral properties
and network size, exponents of in/out-degree distributions, and
minimum in/out degrees.

I. INTRODUCTION

Recently the scale of many real networks have grown
larger and their topologies become more complex. In re-
sponse, many network models have been proposed to an-
alyze the topological property of real networks [1]–[4]. In
particular, analyzing the second smallest eigenvalue of the
network’s Laplacian matrix has attracted much attention [3],
[5]–[8]. This special eigenvalue is referred to as the algebraic
connectivity of networks, and is known as an important
measure for the diffusion speed of many diffusion pro-
cesses over networks (e.g. consensus, information/innovation
spreading, epidemics). Moreover, the maximum eigenvalue
of the associated Laplacian matrix is known to affect the
robustness against inter-agent/node communication delay for
consensus reaching over undirected networks [5]. So far, the
spectral properties of undirected [5], directed small-world [6]
(only the algebraic connectivity), and undirected scale-free
[3] networks have been studied.

In many real, scale-free networks such as social network-
ing service (SNS) and World Wide Web (WWW), however,
the edges may not be bidirectional. For example, in Twitter,
we can follow some (popular) people, but they do not
necessarily follow us; in WWW, a webpage can have links to
some (well-known) pages, which may not have links back to
that webpage. These have motivated us to study the spectral
properties of directed scale-free networks.

In this paper, we first propose a new algorithm that prov-
ably generates directed scale-free networks. This algorithm is
a natural extension of the Barabasi and Albert (BA) model
[2]: starting from an initial directed network, one node is
added at a time with min in-edges from, and mout out-edges
to, the existing nodes by preferential attachment.
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Using this algorithm, we investigate the impacts of struc-
tural properties of directed scale-free networks (size, ex-
ponents of in/out-degree distributions, and minimum in/out
degrees) on the spectral properties. We note that in [9],
an algorithm was reported which also generates directed
scale-free networks. However, there was no study in [9] on
network’s spectral properties.

The outline of the rest of this paper is as follows. In
Section II, we introduce preliminaries on algebraic graph
theory and directed scale-free networks. In Section III, we
present an algorithm which generates directed scale-free
networks and we provide simulation results on the relations
between the structural properties and the spectral properties
of directed scale-free networks. Finally, our conclusions are
stated in Section IV.

II. PRELIMINARIES

For an arbitrary directed graph, we can represent its
topology by the Laplacian matrix. Of particular importance
is the eigenvalue of the Laplacian matrix whose real part
is the second smallest; we refer to the real part of this
eigenvalue as the algebraic connectivity.1 It is well-known
[8] that the algebraic connectivity determines the diffusion
rate of many diffusion processes over networks. Moreover,
the maximum eigenvalue of Laplacian matrix measures the
robustness against inter-agent/node communication delay for
consensus reaching over undirected networks [5]. In this
paper we shall also study the eigenvalue of the Laplacian
matrix whose real part is the largest.

Next, we introduce the scale-free property, which is found
to be a common feature in many real networks [2]. This
property means roughly that many nodes are connected with
only a handful of other nodes, while some (hub) nodes with a
large number of nodes. Let kin (resp. kout) be the in-degree
(resp. out-degree) of a node, namely the number of in-edges
(resp. out-edges) of that node. Also let P (kin), P (kout)
be the in-degree distribution and the out-degree distribution,
respectively; these are the ratios of the number of nodes with
in-degree kin or out-degree kout with respect to the total
number of nodes in the network. The scale-free property of
directed networks refers to that P (kin), P (kout) follow the
power laws [10]:

P (kin) ∼ kin
−γin , P (kout) ∼ kout

−γout ,

where ∼ means “proportional to” and γin, γout are called
the exponents of the in-degree distribution and the out-

1Algebraic connectivity is originally defined for undirected graphs and
refers to the second smallest eigenvalue of the corresponding Laplacian
matrix [11].
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degree destribution, respectively. As an example, the in/out-
degree distributions of WWW follow power laws with γin ≃
2.1, γout ≃ 2.7 [10].

Barabasi and Albert introduced an algorithm to gener-
ate undirected scale-free networks [2]. This algorithm has
two essential ingredients: “growth” and “preferential attach-
ment”. First, the network grows by adding one new node at
each iteration. Second, the probability that the new node is
connected to an existing node is proportional to the latter’s
degree. It was shown [2] that the degree distribution of
undirected scale-free networks generated by BA algorithm
follows a power law.

In this paper we study directed scale-free networks and
their spectral properties. For this, we shall design an algo-
rithm to generate directed scale-free networks, by extending
the BA algorithm but maintaining the two main ingredients
– “growth” and “preferential attachment”.

III. SPECTRAL PROPERTIES OF DIRECTED SCALE-FREE
NETWORKS

A. Algorithm for Generating Directed Scale-Free Networks

First, we present an algorithm to generate directed scale-
free (DSF) networks of N nodes, by extending the BA
algorithm.

Algorithm DSF:
1) Initially let D0 be a directed graph with m0(> 1) nodes

that contains a spanning tree.
2) At each iteration t (≥ 1), add a new node with min ∈

[1,m0] in-edges from and mout ∈ [1,m0] out-edges to
the existing nodes. The probability Πi,in (resp. Πi,out)
that an existing node i with in-degree ki,in (resp. out-
degree ki,out) establishes an in-edge from (resp. out-
edge to) the existing node is

Πi,in =
ki,in∑
j kj,in

, (1)

resp. Πi,out =
ki,out∑
j kj,out

. (2)

The above summations are over all the existing nodes.
No self-loop edges or multiple edges are allowed.

3) If t = N −m0− 1, stop. Otherwise advance t to t+1
and go to Step 2).

In Step 2) of the DSF Algorithm, the network grows with
one new node at each iteration, and the probabilities Πi,in,
Πi,out in (1), (2) mean preferential attachment: the higher
in-degree (resp. out-degree) an existing node has, the more
likely it establishes an in-edge from (resp. out-edge to) the
newly added node.

The growth and preferential attachment features lead to
that the network generated by the DSF Algorithm has scale-
free property, as asserted by the following theorem.

Theorem 1: The network generated by the DSF Algorithm
has scale-free property, i.e.

P (kin) ∼ kin
−γin , P (kout) ∼ kout

−γout ,

where γin = 2 + min

mout
, γout = 2 + mout

min
.

TABLE I
PARAMETER SETTINGS FOR FIG. 1.

γin γout min,mout

2.5 4 min = 2,mout = 4
3 3 min = mout = 3
4 2.5 min = 4,mout = 2
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Fig. 1. The impacts of network size and exponents of in/out-degree
distributions on (a) Reλ2 and (b) ReλN (averaged over 100 simulation
runs).

By Theorem 1, the directed networks generated by the
DSF Algorithm have power-law in/out-degree distributions,
with exponents γin, γout determined solely by the number
min of in-edges and the number mout of out-edges of the
newly added nodes. Hence the exponents may easily be
varied by changing the values of min,mout.

B. Topological Impacts on Spectral Properties

We show simulation results on the spectral properties
of the directed scale-free networks generated by the DSF
Algorithm in Section III-A. We illustrate the topological
impacts on the algebraic connectivity of directed scale-free
networks. We shall focus on three factors: size, exponents of
in/out-degree distributions, and minimum in/out-degrees.

First (size), a ring graph of m0 = 4 nodes is set as
the initial network and let min = mout = 3. Vary N
from 100 to 1000 and compute the corresponding algebraic
connectivity and maximum eigenvalue. This investigation is
important because growth is one of the two main features of
scale-free networks. In Fig. 1(a), we observe that algebraic
connectivity Reλ2 stays roughly the same as N increases.
This means diffusion rate does not drop as the network
expands, which makes directed scale-free networks an ideal
model for scalable (fast) diffusion. On the other hand, in
Fig. 1, we observe that ReλN monotonously increases as
networks grow larger.

Second (exponents of in/out-degree distributions), we
consider the same initial network as above, but change
min,mout to obtain different γin, γout (see Table I). γin, γout
reflect ‘degrees’ of preferential attachment, the second main
feature of scale-free networks. Observe that algebraic con-
nectivity increases (resp. decreases) as the exponent of in-
degree (resp. out-degree) distribution increases, consistently
for different network sizes. This impact of the exponent
of in-degree distribution on the algebraic connectivity is
the same as that of the exponent of degree distribution in
the undirected case [3]. What is interesting in the current
directed networks is that the impact of the exponent of out-
degree distribution is in the reverse direction. Hence for fast
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Fig. 2. The impacts of minimum (a) in-degree and (b) out-degree on
algebraic connectivity Reλ2 (averaged over 100 simulation runs)
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Fig. 3. The impacts of minimum (a) in-degree and (b) out-degree on ReλN

(averaged over 100 simulation runs)

diffusion, it is desired to have high exponent of in-degree
distribution and low exponent of out-degree distribution.
On the contrary, we observe that ReλN decreases (resp.
increases) as the exponent of in-degree (resp. out-degree)
distribution increases for any network sizes.

Third (minimum in/out-degree), we study the impact of
minimum in/out-degree on the spectral properties; this is
for comparison with [3] on the undirected scale-free case.
For this study we set the complete graph with m0 = 21
as the initial graph and increase min with the constraint
min+mout = 21. In Fig. 2 each plotted point is an average
of 100 simulation runs. Observe that algebraic connectivity
increases (resp. decreases) as the minimum in-degree (resp.
minimum out-degree) increases. The impact of the minimum
in-degree on algebraic connectivity is the same as that of
the minimum degree in the undirected case [3], while that
of the minimum out-degree is in the reverse direction. As
shown in Fig. 3(b), we observe that ReλN (averaged over
100 simulation runs) increases as the minimum out-degree
increases, which corresponds to the impact of the minimum
degree in the undirected case [3]. In contrast, the impact
of the minimum in-degree is in the reverse direction (see
Fig. 3(a)).

IV. CONCLUSIONS

We have proposed an algorithm, extending that of Barabasi
and Albert [2], to generate directed scale-free networks.
Using this algorithm, we have investigated by simulations
the topological impacts on the spectral properties of directed
scale-free networks. In future work, we aim to investigate
the spectral properties of hierarchical networks [4], which
have both scale-free and small-world property.
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