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Abstract—This paper investigates the Nash equilibrium seek-
ing problem for non-cooperative games subject to a coupled
inequality constraint. Both the local cost functions and the
constrained function are mutually coupled by the decision
variables of players. A distributed seeking algorithm is proposed
via local information interaction. First, a distributed observer
with the projection property is introduced for each player to
estimate the decision variables of all the other players. By
using these estimations, a seeking algorithm with the projection
property is then synthesized. The stability analysis is based on a
time-scale separation approach. In particular, we first show that
the fast dynamics composed by the distributed observer with
an appropriate parameter guarantees that the estimation errors
converge to an arbitrarily small neighborhood of the origin in
finite time and maintain within it afterwards. Based on this
result, we further show that the slow dynamics composed by
the seeking algorithm achieves the convergence of the strategy
profile to a neighborhood of the generalized Nash equilibrium
of interest. an illustrative example is provided to verify the
theoretical results.

I. INTRODUCTION

In the past few decades, considerable attention has been
paid to the research on game theory due to its various
applications in biology, economy, production and other fields
[1]. With the development of the game theory, the Nash e-
quilibrium seeking in non-cooperative games is of significant
interest from both theoretical and application perspectives [2].

In the general Nash equilibrium seeking problem, each
player attempts to minimize its cost function by responding to
its and other players’ actions. This requires a fully connected
network such that a full observation over all the players’
actions in the network can be performed [3]. To relax this
stringent network requirement, distributed algorithms are
proposed borrowing from the cooperative control idea for
multi-agent systems [4], [5]. In such distributed algorithms,
players minimize their cost functions via local information
interaction with only neighboring players.
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A number of distributed Nash equilibrium seeking al-
gorithms have been proposed for both discrete-time and
continuous-time dynamics. In particular, A gossip-based
methodology was employed for seeking a Nash equilibrium
of non-cooperative games [3]. The generalized convex game
was solved in [6], [7] by using discrete-time distributed algo-
rithms. A discrete-time stochastic algorithm was proposed in
[8] such that players took actions in both simultaneous and
asynchronous manners. Two-network zero-sum games with
switching communications were studied in [9], where seeking
algorithms with heterogeneous and homogenous stepsizes
were developed, respectively. A systematic seeking method-
ology with local agent utility functions was presented in [10]
for state-based potential games. Moreover, by introducing
consensus-based distributed observers, continuous-time seek-
ing algorithms were developed such that the Nash equilibrium
was locally reached [1], [11]. Nevertheless, for the distributed
seeking algorithms proposed in [1]-[3],[6]-[11], every player
just attempts to optimize its local cost function without
imposing any constraint on the players’ actions represented
by decision variables. A distributed Nash equilibrium seeking
algorithm was proposed for aggregative games with decision
variables being subject to linear coupled equality constraints
[12]. By considering linear coupled inequality constraints,
the Lemke’s method was adopted for the generalized Nash
equilibrium seeking in convex games with quadratic cost
functions [13]. It is noted that the seeking algorithms in
[12], [13] are inapplicable to the cases with coupled nonlinear
inequality constraints.

In this paper, a distributed Nash equilibrium seeking al-
gorithm is proposed for non-cooperative games. A nonlinear
inequality constraint is imposed on the decision variables of
players. The objective is to seek the generalized Nash equi-
librium such that the individual cost function coupled with
other decision variables is minimized, while the generalized
Nash equilibrium of interest satisfies the imposed constraint.
Compared with the previous works, the main contributions
herein lie in two aspects. First, compared with [1]-[3], [6]-
[11], we propose a distributed Nash equilibrium algorithm for
the non-cooperative game problem subject to an inequality
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constraint, where a distributed observer with the projection
property is introduced in the algorithm design such that all
the decision variables are obtained by each player. Second, in
contrast to [12], [13] with linear constraints, the considered
inequality constraint is in a more general nonlinear form, and
in turn, the seeking algorithm in this paper is also applicable
to the cases in [12], [13].

The remaining sections are arranged as follows. Section II
provides some useful mathematical preliminaries. Section III
describes the problem to be solved. Section IV introduces our
main results including seeking algorithm development and
stability analysis. Section V performs simulations to verify
the theoretical results. Section VI draws final conclusions.

II. PRELIMINARIES

Notations. Throughout this paper, Rn denotes real vectors
of dimension n, superscript T denotes the transpose of
a vector or a matrix, In denotes an n × n unit vector,
1n denotes an n-dimensional vector with all its entries
being 1, ∥ · ∥ denotes the Euclidean norm of a real vector,
col(x1, x2, · · · , xn) denotes a column stack vector composed
by vectors or scalars x1 to xn, and diag{y1, y2, · · · , yn}
denotes a diagonal matrix with diagonal entries being scalars
y1 to yn. Let ∇f be the gradient of a function f and JF

be the Jacobian matrix of a map F . In addition, given a
constant r ≥ 0, we define sets Ωr = {x ∈ Rn | ∥x∥ < r}
and Ω̄r = {x ∈ Rn | ∥x∥ ≤ r}.

Function properties. A differentiable function f : Rn →
R is convex over set Ω if f(x) − f(y) ≥ ∇f(y)T (x − y),
∀x, y ∈ Ω. f is locally θ-Lipschitz if there exists a definition
domain Ω such that ∥f(x)− f(y)∥ ≤ θ∥x− y∥, ∀x, y ∈ Ω.
In addition, a map F : Rn → Rn is (strictly) monotone
over set Ω if (x − y)T (F (x) − F (y)) ≥ 0 (ω∥x − y∥2),
∀x, y ∈ Ω, where ω is a positive constant. According to [12],
a differentiable map F is (strictly) monotone over Ω if and
only if the Jacobian matrix JF (x) is positive (semi-)definite
for each x ∈ Ω.

Graph theory. The information exchange among players
is established by a topology graph G , {N , E} consisting of
a node set N , {1, 2, · · · , n} and an edge set E ⊆ N ×N .
(j, i) ∈ E indicates that player j’s information is available to
player i. For an undirected graph, (j, i) ∈ E ⇔ (i, j) ∈ E ,
and it is called connected if each player has a path to every
other player. In addition, the (symmetric) adjacency matrix
A = [aij ] ∈ Rn×n associated with an undirected graph G is
defined such that aij > 0 if (j, i) ∈ E and aij = 0 otherwise;
and its (symmetric) Laplacian matrix L = [lij ] ∈ Rn×n is
defined such that lii =

∑n
j=1,j ̸=i aij and lij = −aij for

i ̸= j.

III. PROBLEM STATEMENT

Consider an n-player game subject to the inequality con-
straint. The set of players is denoted by N . Each play-
er is assigned with a decision variable xi ∈ R and a
differentiable cost function fi(x): Ω → R, where x =
col(x1, x2, · · · , xn) ∈ Ω is the strategy profile of this game,
and Ω = Ω̄r × Ω̄r × · · · × Ω̄r is the definition domain of x

with r being a positive constant. Suppose that player i has
no access to player j’s decision variable provided that player
j is not a neighbor of player i. Moreover, the strategy profile
is subject to an inequality constraint, which is defined by the
following constrained set:

χ = {x ∈ Rn|g(x) ≤ 0}, (1)

where the constrained function g : Ω → R is differentiable.
Thus, the feasible strategy set of this game is K = Ω∩χ. In
what follows, we assume that K ≠ ∅.

Consider the aforementioned game subject to the coupled
inequality constraint. The objective herein is to develop a
Nash equilibrium seeking strategy such that all the players
obtain the generalized Nash equilibrium, which is defined as
follows.

Definition 1. A strategy profile x∗ is called a generalized
Nash equilibrium of the game if

fi(x
∗
i , x

∗
−i) ≤ fi(xi, x

∗
−i), ∀x ∈ K, (2)

where x−i = col(x1, · · · , xi−1, xi+1 · · · , xn), i ∈ N .

In fact, the generalized Nash equilibrium is an optimal
strategy profile involved in set K in the sense that no player
can further reduce its associated cost function by unilaterally
changing its own decision variable. In addition, to clarify the
subsequent analysis, we define a gradient vector

F (x) = col(∇x1f1(x),∇x2f2(x), · · · ,∇xnfn(x)). (3)

Before moving on, some necessary assumptions about the
studied game are imposed as follows.

Assumption 1 (Connectivity). The underlying graph G
characterizing the communication network among players is
undirected and connected.

Assumption 2 (Lipschitz). The constrained function g(x),
the gradients ∇xifi(x), i ∈ N , and ∇xig(x) are θ-Lipschitz
over set Ω.

Assumption 3 (Monotonicity). The gradient vector F (x)
is strictly monotone, and the constrained function g(x) is
monotone over set Ω.

Remark 1. According to [12], Assumptions 2-3 guarantee
that the studied game admits a unique generalized Nash
equilibrium introduced in Definition 1.

Next, motivated by [14], we have the following result.

Lemma 1. Suppose that Assumptions 1-3 hold. The strategy
profile x∗ ∈ K is a generalized Nash equilibrium if and only
if there exists a Lagrangian multiplier λ∗

i ≥ 0 for each player
i ∈ N such that the following KKT condition holds:

∇xifi(x
∗) + λ∗

i∇xig(x
∗) = 0,

g(x∗) ≤ 0, λ∗
i g(x

∗) = 0.
(4)

In addition, the set of multipliers {λ∗
i } satisfying the KKT

condition (4) is closed, convex and bounded.

In terms of Lemma 1, the Nash equilibrium seeking
problem can be transformed into searching a strategy profile
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x∗ ∈ Ω as well as a multiplier λ∗ = col(λ∗
1, λ

∗
2, · · · , λ∗

n)
such that the KKT condition (4) is guaranteed.

IV. MAIN RESULTS

In this section, a distributed seeking algorithm is exploited
such that the strategy profile converges to the generalized
Nash equilibrium introduced in Definition 1. We first propose
a feasible algorithm with the help of an improved distributed
observer, and then analyze the system stability using a time-
scale separation approach.

A. Seeking algorithm synthesis

To begin with, we assign a Lagrangian function for each
player i ∈ N in the following form:

Li(xi, λi) = fi(xi, x−i) + λig(xi, x−i), λi ≥ 0. (5)

Inspired by Saddle Point Theorem [14], we have the follow-
ing result.

Lemma 2. Suppose that Assumptions 1-3 hold. The strategy
profile x∗ ∈ Ω is a generalized Nash equilibrium satisfying
the KKT condition (4) with a multiplier λ∗ if and only if
each (x∗

i , λ
∗
i ) is a saddle point of the Lagrangian function

Li(xi, λi) given by (5).

To search a saddle point of the Lagrangian function (5),
the primal-dual gradient dynamics, which are popular in the
solution to the distributed optimization problem [15], [16],
are implemented to develop the seeking algorithm. More
specifically,

ẋi =−∇xiLi(xi, λi) = −∇xifi(x)− λi∇xig(x), (6a)

λ̇i =[∇λiLi(xi, λi)]
+
λi

= [g(x)]+λi
, (6b)

where operator [z]+λ is defined such that [z]+λ = z if z > 0
or λ > 0, and otherwise, [z]+λ = 0. This operation suffices to
guarantee that λi(t) ≥ 0, ∀t ≥ 0 with the initial λi(0) ≥ 0
[16]. Next, a lemma is presented to discuss the equilibrium
of algorithm (6).

Lemma 3. For an equilibrium (x̄, λ̄) of algorithm (6), x̄ is
the generalized Nash equilibrium introduced in Definition 1.

Proof. Based on (6b), [g(x̄)]+
λ̄i

= 0 implies that λ̄ig(x̄) = 0

and g(x̄) ≤ 0, i ∈ N . Moreover, from (6a), we have that

∇xi
fi(x̄) + λ̄i∇xi

gi(x̄) = 0, i ∈ N . (7)

Based on the above argument, equilibrium (x̄, λ̄) can be
shown to satisfy the KKT condition (4). According to Lemma
1, x̄ is exactly the generalized Nash equilibrium.

It is worth noticing that algorithm (6) is available under
a fundamental assumption that each player has access to all
the others’ decision variables. Nonetheless, this assumption
is impractical in practical applications by considering insuf-
ficient resource sharing and privacy protection. To address

this issue, we introduce a distributed observer for each player
using the projection algorithm:

˙̂xij =



ρij , if x̂ij ∈ Ωr,

or x̂ij = r with ρij ≤ 0,

or x̂ij = −r with ρij ≥ 0,

0 if x̂ij = r with ρij > 0,

or x̂ij = −r with ρij < 0,

(8a)

with

ρij = σ

(
−

n∑
k=1

aik(x̂ij − x̂kj)− aij(x̂ij − xj)

)
, (8b)

where x̂ij denotes the player i’s estimation on the j-th
decision variable, σ is a sufficiently large positive constant
to be determined, and aij denotes the (i, j)-th entry of the
adjacency matrix A associated with the underlying graph G.
It is trivial to show that each estimation x̂ij(t) ∈ Ω̄r, ∀t ≥ 0
given x̂ij(0) ∈ Ω̄r for i, j ∈ N .

Next, define x̂i = col(x̂i1, x̂i2, · · · , x̂in). By implementing
the estimation x̂i outputted from the distributed observer
(8) instead of the unavailable strategy profile x, the seeking
algorithm (6) is revised into

ẋi =



ui, if xi ∈ Ωr,

or xi = r with ui ≤ 0,

or xi = −r with ui ≥ 0,

0 if xi = r with ui > 0,

or xi = −r with ui < 0.

(9a)

with

ui = −∇x̂ifi(x̂i)− λi∇x̂ig(x̂i), (9b)

and

λ̇i =



g(x̂i) if 0 < λi < λmax,

or λi = 0 with g(x̂i) ≥ 0,

or λi = λmax with g(x̂i) ≤ 0,

0 if λi = 0 with g(x̂i) < 0,

or λi = λmax with g(x̂i) > 0,

(9c)

where λmax is a sufficiently large control parameter to be
determined. Likewise, the seeking algorithm (9) using the
projection algorithm guarantees that each decision variable
xi(t) ∈ Ω̄r and multiplier λi(t) ∈ [0, λmax], ∀t ≥ 0 given
xi(0) ∈ Ω̄r and λi(0) ∈ [0, λmax] for i ∈ N . Note from (8)
and (9) that, in our seeking algorithm, player i updates its
private variables xi and λi with the estimation x̂i obtained
by implementing the distributed observer through the local
information interaction.

B. Stability analysis

In this subsection, using the time-scale separation ap-
proach, we prove that the seeking algorithm (9) guarantees
the convergence of the strategy profile to an arbitrarily small
neighborhood of its generalized Nash equilibrium given in
Definition 1. The underlying idea behind the time-scale
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separation approach lies in that the distributed observer (8)
and seeking algorithm (9) are considered as a composite
system with slow dynamics (9) and fast dynamics (8). By
following this idea, the corresponding analysis is divided into
two parts. The first one focuses on the initialization time
interval [0, T1]. Proposition 1 shows that for arbitrarily small
T1, a sufficiently large σ can be chosen for the distributed
observer (8) such that ∥x̂i − x∥ ≤ µ, i ∈ N , where µ is an
arbitrarily small constant. With this result, Theorem 1 next
shows that the strategy profile converges to a neighborhood
of the generalized Nash equilibrium.

Proposition 1. Consider the distributed observer (8). Sup-
pose that Assumptions 1-3 hold. For any µ > 0 and T1 > 0,
there always exists a sufficiently large parameter σ such that
each estimation error x̂ij − xj , i, j ∈ N converges to the
µ-neighborhood of the origin in finite time T1, and then
maintains within it afterwards.

Proof. First, the derivative of the positive definite function
Vij =

1
2 |x̂ij − xj |2, i, j ∈ N satisfies

V̇ij = (x̂ij − xj)( ˙̂xij − ẋj). (10)

Consider the distributed observer (8). If x̂ij = r with ρij ≥ 0,
then ˙̂xij = 0. Due to the fact that xj ∈ Ω̄r ensured by the
seeking algorithm (9), this implies that

V̇ij = −(r − xj)ẋj ≤ (r − xj)(ρij − ẋj). (11)

In the same manner, if x̂ij = −r with ρij ≤ 0, we can also
show that (11) holds. Therefore, the distributed observer (8)
guarantees that

V̇ij ≤ (x̂ij − xj)(ρij − ẋj). (12)

Next, assign a Lyapunov function V =
∑n

i=1

∑n
j=1 Vij .

In terms of (8b) and (12), its derivative can be derived to
satisfy

V̇ ≤
n∑

i=1

n∑
j=1

(x̂ij − xj)(ρij − ẋj)

=
n∑

i=1

n∑
j=1

σ

(
−

n∑
k=1

aik(x̂ij − x̂kj)− aij(x̂ij − xj)

)

−
n∑

i=1

n∑
j=1

(x̂ij − xj)ẋj

=− σx̃T (L⊗ In + L̄)x̃− x̃T (ẋ⊗ 1n), (13)

where x̃ = col(x̃1, x̃2, · · · , x̃n) with x̃i = x̂i−x, i ∈ N , L is
the Laplacian matrix associated with the underlying graph G
and L̄=diag{a11, a12, · · · , a1n, a21, a22, · · · , a2n, · · · , an1,
an2, · · · , ann}. According to [1], matrix (L ⊗ In + L̄)
is positive definite under Assumption 1. In addition, by
considering Assumption 2, it follows from (8) and (9) that
∇xifi(x̂i), ∇xigi(x̂i) and λi are bounded with respect to
x̂i ∈ Ω. This implies that there exists a positive constant β
such that ∥ẋ ⊗ 1n∥ ≤ β. Based on the above argument, V̇
further satisfies

V̇ ≤ −σα∥x̃∥2 + β∥x̃∥, (14)

where α is the smallest eigenvalue of (L ⊗ In + L̄). Then,
take W =

√
2V . When V ̸= 0, it follows from (14) that the

derivative of W satisfies

Ẇ = −σαW + β. (15)

When V = 0, the Dini derivative of W satisfies D+W ≤
β. Hence, D+W satisfies (15) all the time. According to
Comparison Principal [17], it follows that

W (t) ≤ e−σαtW (0) + (1− e−σαt)
β

σα
, ∀t ≥ 0. (16)

Given any µ and T1, if σ is chosen such that

σ >

{
β

α(µ−W (0)) , if W (0) < µ,

max{ 2β
µα ,

1
αT1

ln 2W (0)
µ }, if W (0) ≥ µ,

(17)

then W (t) ≤ µ for t ∈ [T1,∞). This implies that |x̃ij(t)| ≤
µ, t ∈ [T1,∞) for i, j ∈ N .

Remark 2. Without considering the finite time constraint,
it follows from (16) that each estimation error xi − x,
i ∈ N is always bounded and ultimately converges to set
Zi = {(xi − x) ∈ Rn|∥xi − x∥ ≤

√
nβ
ασ }. It can be

observed from this convergent set that increasing parameter σ
reduces the ultimate convergent bound, effectively improving
the estimation accuracy.

According to the seeking algorithm (9), each decision
variable xi, i ∈ N cannot escape from the domain of
definition Ω̄r r during the time interval [0, T1]. We next focus
on the convergence performance of the strategy profile driven
by the seeking algorithm (9) for the time interval [T1,∞).
The main result is summarized in Theorem 1.

Theorem 1. Consider the distributed observer (8) and seek-
ing algorithm (9). Suppose that Assumptions 1-3 hold. There
exist sufficiently large parameters λmax and σ such that the
strategy profile x converges to a small neighborhood of the
generalized Nash equilibrium.

Proof. Assign a Lyapunov function as follows:

U =
1

2

n∑
i=1

(xi − x̄i)
2 +

1

2

n∑
i=1

(λi − λ̄i)
2. (18)

where x̄i and λ̄i are defined in Lemma 3. Its derivative
satisfies

U̇ =−
n∑

i=1

(xi − x̄i)ẋi +
n∑

i=1

(λi − λ̄i)λ̇i. (19)

Recall (9a). If xi = r with ui > 0, then

(xi − x̄i)ẋi = 0 ≤ (xi − x̄i)ui. (20)

Similarly, if xi = −r with ui < 0, (20) also holds. Choose
λmax such that λmax ≥ maxi∈N λ̄i. In such a case, with the
same argument as above, it also follows from (9c) that

(λi − λ̄i)λ̇i ≤ (λi − λ̄i)g(x̂i). (21)
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Thus, U̇ satisfies

U̇ ≤−
n∑

i=1

(xi − x̄i)(∇xifi(x̂i) + λi∇xig(x̂i))

+
n∑

i=1

(λi − λ̄i)g(x̂i)

=−
n∑

i=1

(xi − x̄i)(∇xifi(x̄) + λ̄i∇xig(x̄))

− (x− x̄)T (F (x)− F (x̄))

+
n∑

i=1

(xi − x̄i)(∇xifi(x)−∇xifi(x̂i))

−
n∑

i=1

(xi − x̄i)(λi∇xi
g(x)− λ̄i∇xi

g(x̄))

+

n∑
i=1

λi(xi − x̄i)(∇xig(x)−∇xig(x̂i))

+

n∑
i=1

(λi − λ̄i)g(x)−
n∑

i=1

(λi − λ̄i)(g(x)− g(x̂i)).

Lemma 3 has guaranteed that ∇xifi(x̄) + λ̄i∇xig(x̄) = 0,
i ∈ N . Then, under Assumption 3, it follows that

−(x− x̄)T (F (x)− F (x̄)) ≤ −ω∥x− x̄∥2. (22)

In addition, considering Assumption 3 and the fact that (λi−
λ̄i)g(x̄) ≤ 0, we have that

−
n∑

i=1

(
(xi−x̄i)(λi∇xig(x)−λ̄i∇xig(x̄))−(λi−λ̄i)g(x)

)
=−

n∑
i=1

(λi(g(x̄)− g(x)−∇xig(x)(x̄i − xi))

+λ̄i(g(x)− g(x̄)−∇xig(x̄)(xi − x̄i))− (λi − λ̄i)g(x̄)
)

≤0, i ∈ N . (23)

It then follows that U̇ satisfies

U̇ ≤− ω∥x− x̄∥2 +
n∑

i=1

(xi − x̄i)(∇xifi(x)−∇xifi(x̂i))

+
n∑

i=1

λi(xi − x̄i)(∇xig(x)−∇xig(x̂))

−
n∑

i=1

(λi − λ̄i)(g(x)− g(x̂)). (24)

Next, according to Assumption 2 and the fact that λi, λ̄i ∈
[0, λmax], it follows that for t ∈ [T1,∞),

U̇ ≤− ω∥x− x̄∥2 + θ(1 + 2λmax)∥x− x̄∥∥x− x̂∥. (25)

Proposition 1 has shown that for arbitrary µ > 0 and T1 > 0,
a sufficiently large σ can guarantee that ∥x(t) − x̂(t)∥ ≤ µ
for t ∈ [T1,∞). With this result, U̇(t) satisfies

U̇ ≤− ω∥x− x̄∥2 + θµ(1 + 2λmax)∥x− x̄∥, (26)

for t ∈ [T1,∞), which implies that U̇ is negative definite
given that ∥x − x̄∥ > θµ(1+2λmax)

ω . Therefore, x − x̄ is

?>=<89:;1 ?>=<89:;2

��
��
��
��
�

?>=<89:;3

��
��
��
��
�

?>=<89:;4 ?>=<89:;5

Fig. 1. Network graph among players.

bounded and ultimately converges to set Z = {(x − x̄) ∈
Rn|∥x− x̄∥ ≤ θµ(1+2λmax)

ω }.

Remark 3. Note from the convergent set Z in the analysis
of Theorem 1 that, the convergent accuracy is concerned
with parameter µ, which reflects the estimation accuracy
using the distributed observer (8) on the strategy profile
x for each player. As shown in Proposition 1, increasing
parameter σ is an effective way to decrease µ, which further
improves the convergent accuracy of the strategy profile x to
its generalized Nash equilibrium.

V. SIMULATIONS

In this section, an example is given to verify our seeking
algorithm. Suppose that there is a non-cooperative game
composed by five players. The cost function fi(x) assigned
to each player is fi(x) = mif(x), where m1 = 1, m2 = 5,
m3 = 2, m4 = 3, m5 = 2 and

f(x) =5x2
1 + 2x1x2 + 5x2

2 + x2x3 + x2x5 +
5

2
x2
3 + x3x4

+ x2
4 + 2x4x5 + 3x2

5−2x1+3x2−8x3 − 6x4 + 5x5,

with xi ∈ Ω̄10, i ∈ {1, 2, · · · , 5}. Note that each fi(x) is
coupled by others’ decision variables. The network graph
among these five players is illustrated in Fig. 1, which can
be examined to be connected. The parameters in the seeking
algorithm are chosen as σ = 100 and λmax = 10. It can
be calculated that the Nash equilibrium of this game is
[0.2829,−0.4143, 1.555, 0.64,−0.9776]. Fig. 2 exhibits the
convergence trajectory of each decision variable to the Nash
equilibrium. In addition, consider that the strategy profile
suffers from the constraint:

∑5
i=1 x

2
i ≤ 1.52. In such a

case, the generalized Nash equilibrium can be calculated as
[0.1942,−0.3507, 1.119, 0.5597,−0.7244]. Fig. 3 shows that
each decision variable subject to the inequality constraint
converges to the neighborhood of the generalized Nash
equilibrium. This verifies the convergence performance of the
proposed seeking algorithm.

VI. CONCLUSION

This paper studies the distributed Nash equilibrium seeking
problem for non-cooperative games subject to a coupled in-
equality constraint. All the cost functions and the constrained
function are coupled by the decision variables. A distributed
observer with the projection property is first developed such
that each player obtains all the others’ decision variables.
Using these estimations and the projection operation, we then
propose a distributed Nash equilibrium seeking scheme. By
using the time-scale separation approach, it is proven that
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Fig. 2. Trajectories of decision variables without constraint (example 1).
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Fig. 3. Trajectories of decision variables with constraint (example 1).

the proposed seeking algorithm guarantees the convergence
of the strategy profile to an arbitrarily small neighborhood of
the generalized Nash equilibrium.
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