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I. EXTENDED ABSTRACT

Mean field game (MFG) theory studies stochastic decision
making problems involving a large number of noncooperative
and individually insignificant agents, and provides a powerful
methodology to reduce the complexity in designing strategies
[13]. For an overview of the theory and applications, the
readers are referred to [4], [7], [11], [14], [16], [19] and
references therein.

There is a parallel development on mean field social
optimization where a large number of agents cooperatively
minimize a social cost as the sum of individual costs.
Different from mean field games, the individual strategy
selection of an agent is not selfish and should take into
account both self improvement and the aggregate impact on
other agents’ costs. Mean field social optimization problems
have been studied in multi-agent collective motion [1], [25],
social consensus control [23], economic theory [24]. Other
related literature includes Markov decision processes using
aggregate statistics and their mean field limit [10], LQ mean
field teams [2], LQ social optimization with a major plyaer
[17], mean field teams with Markov jumps [27], social
optimization with nonlinear diffusion dynamics [26], and
cooperative stochastic differential games [29].

In this paper, we consider social optimization in an LQ
model of uniform agents. The dynamics of agent i are given
by the stochastic differential equation (SDE):

dx; (Ax,- -‘rBLl,‘)dl + DdW;,

>0, 1<i<N. (1)

We use (Q,.7,{.%};>0,P) to denote an underlying filtered
probability space. The state x; and the control u; are n
and n; dimensional vectors respectively. The initial states
{xi(0), 1 <i < N} are independent. The noise processes
{W;, 1 <i< N} are ny dimensional independent standard
Brownian motions adapted to .%;, which are also independent
of {x;(0), 1 < j<N}. The constant matrices A, B and D have
compatible dimensions. Given a symmetric matrix M > 0,
the quadratic form z” Mz may be denoted as |z|3,. Denote
w:=(up, - ,un).
The individual cost for agent i is given by

I =E [ e = O+ ul Ruldr, - (2)
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where @(x™) = Ix®™ 4+ 1 and xV) := (1/N)Tx; is the
mean field coupling term. The constant matrices or vectors
I', >0, R>0 and n have compatible dimensions, and
p >0 is a discount factor. The social cost is defined as

I8 (u()) = ;uu(-)).

The minimization of the social cost is a standard optimal
control problem. However, the exact solution requires cen-
tralized information for each agent. So a solution of practical
interest is to find a set of decentralized strategies which has
N)(u()) for large

3)

negligible optimality loss in minimizing JS(OC
N and the solution method has been developed in [15]. We
make the standing assumption for this paper:
(A1) (A,B) is stabilizable and (A,Q?) is detectable.
Under (Al), there exists a unique solution IT > 0 to the
algebraic Riccati equation (ARE):

pIl =TIA+ATTT—IIBR'B' T + Q. 4)

Definition 1 For integer k > 1 and real number r > 0,
C,([0,00),R¥) consists of all functions f € C([0,0),R¥) such
that sup, | f(1)|e™"" < oo, for some 0 <1’ < r. Here r' may
depend on f.

Denote Qr =I'"Q+QI —TI'TQI and nr = (I-T'T)Qn.
We introduce the Social Certainty Equivalence (SCE) equa-
tion system:

dx

= —~BR'B"IM)x— BR'Bs, )
d
d% — Ori+(pI—AT +TIBR'B )s+nr,  (6)

where %(0) = xo, and we look for (%,s) € Cp/z([O,oo),RZ").
If a finite time horizon [0,T] is considered for (2), s will
have a terminal condition s(7') and IT will depend on time.
This results in a standard two point boundary value (TPBV)
problem for linear ordinary differential equations (ODEs).
Given the infinite horizon, the system (5)-(6) may be viewed
as a partial boundary value (PBV) problem where s satisfies
a growth condition instead of a terminal condition. Since the
initial condition sy is unspecified, a key part of finding a
solution is to determine sg.

The key result in [15] is that if (5)-(6) has a unique
solution, the set of decentralized strategies
=R 'B'(Ix; +s), 1<i<N,

A

Ui

(7

has asymptotic social optimality. In other words, centralized

strategies can further reduce the cost Js(é?(u()) by at most
o(1).
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To give the reader insights, a briefly review of the proce-
dure of constructing (5)-(6) via person-by-person optimality
[12] and consistent mean field approximations is provided in
Appendix A of [9]. In fact, [15] constructed a more general
version of (5)-(6) where the parameter A is randomized over
the population and accordingly X in the equation of s is
replaced by a mean field averaging over the nonuniform
population.

A. Our approach and contributions

After some transformation, the coefficient matrix

A—BR'BTIT —BR BT
Or pl —AT + TIBR~'BT

of (5)-(6) reduces to a Hamiltonian matrix which can be
associated with an LQ optimal control problem with state
weight matrix —Qr. The connection to such an LQ control
problem is remarkable since its state weight may not be
positive semi-definite [28], [30] although Q > 0 in Js<(1,\é).
When QOr <0, existence and uniqueness of the solution
has been proved [15, Theorem 4.3] by a standard Riccati
equation approach. On the other hand, due to the intrinsic
optimal control nature of the social optimization problem,
one expects to obtain solvability of the SCE equation system
under much more general conditions, which is the focus of
this work.

We develop a new approach to prove existence and unique-
ness of the solution of (5)-(6) for a general Or by exploiting
a Hamiltonian matrix structure and the well known invariant
subspace method [6]. Specifically, aided by the solution
of a continuous-time algebraic Riccati equation (CARE)
with possibly indefinite state weight, we decompose the
Hamiltonian matrix into a block-wise triangular form where
the stable eigenvalues are separated from the unstable ones.
To numerically solve the Riccati equation, we extend the
classic Schur method [20] to the present case with possibly
indefinite state weight. The approach of decomposing the
stable invariant subspace is further extended to solve LQ
mean field games; see [3], [5], [21], [22] for related literature
on LQ mean field games. The main results of this paper have
been reported in [8], [9].

B. The SCE equation system

Definition 2 /6] A matrix K € R¥>*?" js called a Hamilto-
nian matrix if JK is symmetric, where

=15 4

—1I,
We can transform the coefficient matrix in (5)-(6) to a
Hamiltonian matrix by defining

Iy
0

F=e Pg, §=e P/,

and we obtain

dr.
ds
dt

®)
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where %(0) = xo, fir = e’%’nr, and
_pp—lpT
H— o BR TB
or -4
Note that fir- in (8) is a function of ¢. Since Qr is symmetric,

H is a Hamiltonian matrix. By exploiting the properties of
H, the ODE (8) can be analyzed.

}, %:A—BR_lBTHfgI. )

Theorem 3 Assume that the pair (A,B) is stabilizable and
the Hamiltonian matrix H in (9) has no eigenvalues on the
imaginary axis. Then there exists a unique initial condition
so such that (5)-(6) has a solution (%,s) € Cp/z([O,oo),]RZ").

For the special case Qr <0, since </ is stable, by [18,
Theorem 9.3.3.], we can show that H necessarily has no
eigenvalues with zero real parts.

C. Extension to mean field games

We consider the Nash game of N players with dynamics
and costs given by (1)-(2). According to mean field game
theory [13], [14], [15], the decentralized strategies for the
above N player game can be designed by using the following
ODE system:

.
di: — (A—BR'B"I)x—BR'B s, (10)
d

ch = Qi+ (pl—AT +TIBR'BT)s+0n, (11)

where %(0) = xg is given. Letting £ = e P/2% and § = e P'/%s,
we obtain

i
=~ 75— BR'B'S,
dt

ds
— =Q0ri—dTs+1
R orx s+1r,
where £(0) = xo, &/ = A—BR'B'II — 51 and iy =
e P20n.

Notice that QI" is generally asymmetric and the coefficient
matrix (see (12)) does not have a Hamiltonian structure.
However, we can adapt the invariant subspace method to
find a solution (%,s) € Cp/z([O,oo),Rz”). Let
o
= [ o }
Theorem 4 Suppose M in (12) has n stable eigenvalues and
n eigenvalues with strictly positive real parts. Assume there
Ui Un
U1 Uxn

J

where My has n stable eigenvalues and M»y has n eigenval-
ues with strictly positive real parts. Then for any fixed initial
condition xo of (10)-(11), there exists a unique sy given by

—BR'BT

_ﬂT (12)

exists an invertible matrix U = ], where Uy is
invertible, such that

My,
0

M,

U~'MU =
[ M)

—1-=
S0 =U21U” X0

~+oo
+(U21U1_11U12*U22)/0 e M2y one P 2drx,
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where V.= U1 = |Y10 Vi2l Gn thar (10)(11) has a
Vor Va2

solution (%,s) € Cp /5([0,00),R™").

The existence of such a matrix U is related to the existence
of so-called graph invariant subspace for M; see e.g. [6].
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