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Abstract— We analyze the mixing rate of a class of Markov
chains where two features together help significantly speed up
mixing: first, a cycle graph is enriched with extra edges in a
randomized but structured way. Second, the Markov chain on
the graph is taken to be asymmetric. We show a bound on the
mixing rate of these Markov chains and demonstrate that both
these features contribute to the outcome.
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I. INTRODUCTION

Markov chains appear in various places in applications
as a fundamental underlying building element. For instance,
Markov chain Monte Carlo is a widespread tool for sampling
from a wide variety of distributions or for approximating
integrals, see Jerrum [1], Diaconis [2]. Another application is
average consensus, where the goal is to compute the average
of initial values appearing at a multitude of nodes connected
along a network (which could correspond to measurements,
opinions, local computation outputs, etc.), see Olshevky and
Tsitsiklis [3], Olfati-Saber et al. [4]. The list is far from
complete.

In all the cases, there is a natural correspondence between
the efficiency of the particular application and the mixing
properties of the underlying Markov chain. Therefore there is
a high demand for better understanding the mixing behavior
of various Markov chains not only for their mathematical
interest, but also for their application significance.

Currently our focus is on the consensus relation. This
translates to Markov chains that have uniform stationary dis-
tribution. An important feature is that, beside the analysis of a
specific system, sometimes there is some freedom available
in designing the network. This can involve the possibility
of choosing the interaction strengths but sometimes also
modifying the network structure itself. One can then use this
freedom to amplify the mixing effect, and hence speed up
the process of computing and agreeing on an average, i.e.
reaching a consensus. Determining how to do this precisely
is a challenging question.

In our current setup, we initialize with a connection net-
work that is as sparse and homogeneous as possible: a cycle.
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This is modified first by adding a stronger interconnection
structure according to a pattern to a small number of “hubs”.
Note that this approach is related conceptually to the idea of
Csermely et al. [5] whose theory describes that a wide variety
of real-world networks have two types of nodes, some in the
“core” with strong connectivity structure and some in the
“periphery” with lower number of edges and relying on the
“core” in being well-connected to the network. This is what
happens in our construction as well: the rich interconnection
of the “hubs” is paired with the loose structure of the
cycle containing the overwhelming portion of nodes. Besides
this type of network structure, a difference considering the
weights is present in our case: a drift is also introduced to
the cycle, that is, all clockwise weights are increased and
counter-clockwise weights decreased by the same amount.
This additional modification may seem counter-intuitive at
first, but the resulting asymmetry will play an important role
for the mixing to be efficient.

We present a generalization of our previous work [6]
where we first demonstrated that a fast rate towards consen-
sus is achievable with this type of construction. However,
in that paper all-to-all connections were assumed among the
hubs, now we loosen these constraints.

II. MAIN RESULT

We now describe formally the graph model and the
Markov chain together with the related definitions to be able
to state precisely the theorem about mixing efficiency.

Definition 1: Given k ≤ n ∈ Z+ and a doubly stochastic
k × k matrix A we define the randomized Markov chain
Pn(A) on n nodes as follows. Starting from a cycle graph
on n nodes, we randomly uniformly and independently select
k different edges which we remove. For the ith remaining
arc, 1 ≤ i ≤ k, we mark the clockwise endpoint as ai and
the other end as bi. We introduce transitions from bi to aj
according to the matrix A. Within any arc we set transition
probabilities to 1 along the arc all the way from ai to bi.
An example of such a Markov chain is demonstrated in Fig.
1.

We focus on the mixing behavior of the resulting (random)
Markov chain which we measure by the following quantity:

Definition 2: For a Markov chain with transition matrix
P we define the mixing rate λ as

λ = min {1− |µ| : µ 6= 1 is an eigenvalue of P} .

Using this scheme, we want to form statements for fixed
patterns, but when the size of the graph increases to infinity.
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Fig. 1: Example for Pn(A) (see Definition 1). Transitions
along the orange arcs happen with probability one, transitions
on the black lines are distributed according to the matrix A.

To formalize this, choose a pattern matrix B (which we will
assume to be doubly stochastic and ergodic). Then we define
B∗m = 1

mB ×Km where Km is the m-clique, that is, we
take m copies of each node of B and connect two nodes the
same way as their preimages were connected, then normalize
properly. For a demonstration of this transformation see Fig.
2. With all the terminology introduced, the following theorem
holds.

Fig. 2: Example for the scaling of patterns: for the transition
matrix B of a 4 node Markov chain represented on the left
we see the result of B∗3 on the right (the exact numerical
values are not shown).

Theorem 1: Given are a doubly stochastic ergodic matrix
B and some constants 1 < ρl < ρu < ∞. Assume
n, k →∞ while ρl < log n/ log k < ρu. Then for any γ > 4
asymptotically almost surely (a.a.s.) we have the following
bound on the mixing rate of Pn(B∗k):

λ >
k

n logγ k
.

Simply speaking, the determining factor for the mixing
rate is the average arc length n

k|B| with some extra loga-
rithmic factors (the constant size of B for the arc length is
comparably negligible).

III. COMPARISON AND NUMERICAL RESULTS

We first relate Theorem 1 to alternative situations, where
the Markov chain is slightly different.

Most importantly, one could consider a version without
drift, when a certain symmetric transition scheme is present
along the arcs. Observe that locally within an arc we get
a symmetric random walk. If a Markov chain is launched
from the center of any arc, the escape time from that arc is
quadratic in the length, therefore by standard tools [7] one
can see that

λ < C
k2

n2

would hold for some constant C > 0. This can be easily
strengthened with a logarithmic factor a.a.s. This confirms
that the drift indeed plays a key role in the high mixing rate
achieved before.

The other natural modification is about choosing the inter-
connection structure among the hubs with more freedom, this
is an open question in general to the best of our knowledge.
Note that some extra edges are necessary, only the cycle
itself gives rates that decrease quadratically in the length for
any transition probabilities (even if non-homogeneous), see
[8], [9] for a detailed discussion.

For specific examples we present numerical simulations
for two different pattern matrices. In Fig. 3 we use the B
already presented in Fig. 2, then in Fig. 4 we use a slightly
larger and less interconnected alternative. In both cases we
scale the pattern matrix so that |B∗k| ≈

√
n.
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Fig. 3: Histograms for the mixing rates λ for the randomized
Markov chains Pn(B∗k), using the pattern matrix in Fig. 2,
scaled to have ≈

√
n nodes.

Both figures are based on more than 30.000 randomly
generated Markov chains with n ranging from 54 to 2980. As
we are interested in typical behaviors of these randomized
Markov chains, we discarded the top and bottom 5% of the
results for every n considered.

In both cases we present a log-log histogram showing the
decrease of λ as the node count n increases. The histogram
presents the simulation results for the non-reversible and
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(a) Graph representing the pattern matrix B
(edges present for non-zero entries)
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(b) Log-log histogram of the mixing rates for increasing node counts

Fig. 4: Simulations for mixing rates of random Markov
chains chains Pn(B∗k) using the pattern matrix shown in
(a), scaled to have ≈

√
n nodes.

reversible Markov chain and we do observe the strong
separation predicted by the theoretical results. The stripe
on the top presents λ for the non-reversible Markov chains
while the bottom one corresponds to the reversible ones.
There is an interesting discontinuous behavior visible on
both histograms. This can be traced back to the occasions
when we step up with the scaling of the pattern matrices
due to the node count increase. Nevertheless, for larger sizes
the asymptotic behaviour starts to become the determining
component, providing a 1/2 factor advantage for log λ for
the non-reversible Markov chains.
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